Algorithm II: Homework 0

SKE Data Structure and Algorithm 2/2019

Introduction

Grading policy

- Intuition based, not solution based: This homework will be graded based on your attempt and not your solution. Giving a completely wrong answer will **not**, and never make your score zero.
- Think of them as an long-term brain teaser: Don't complete them in one day, or you'll missed the chances of perfecting your understandings and perspective of the problems little by little.

Ethics and Code of Conduct

- **Zero tolerance on plagiarism:** This course enforces a zero tolerance policy on plagiarism.
- Wrong answer is better than correct but copied answer: The scoring criteria is designed to heavily penalise copied answers.
- No submission is better than turning in copied submission: The scoring criteria is designed to motivate students to submit their original work.
- Feel free to discuss: Discussion among friends and colleagues are completely normal, and we encourage that. However, please indicate your collaborators, as it will be used to track works' originality.

Assigned Questions

From your student ID in the format of XX1054WXYZ,

- $\bullet\,$ If W is odd then complete question 1.1.
- If W is even then complete question 1.2.
- If X is odd then complete question 2.1.
- If X is even then complete question 2.2.
- If Y is in $\{1, 4, 7, 0\}$ then complete question 3.1
- If Y is in $\{2, 5, 8\}$ then complete question 3.2
- If Y is in $\{3, 6, 9\}$ then complete question 3.3
- If Z is in $\{1, 4, 7, 0\}$ then complete question 4.1
- If Z is in $\{2, 5, 8\}$ then complete question 4.2
- If Z is in $\{3, 6, 9\}$ then complete question 4.3

1 Revisiting proofs 1

These assignments were adapted from **Discrete Mathematics**, Douglas E. Ensley and J. Winston Crawley, Wiley.

1.1 Implication A

Prove or disprove that for every integer $n \ge 1$, if n is odd then $n^2 + 4$ is a prime number.

1.2 Implication B

Prove or disprove that for every positive integer n, $2n^3$ is divisible by 3.

2 Revisiting proofs 2

These assignments were adapted from **Discrete Mathematics**, Douglas E. Ensley and J. Winston Crawley, Wiley.

2.1 Implication C

Prove or disprove that for every positive integer n, if n is odd then $n^3 - n$ is divisible by 4.

2.2 Implication D

Prove or disprove that for all integers n > 4, if n can be expressed in the term of z^2 for any integers z, then n-1 is not a prime number.

2.3 Implication E

Prove or disprove that for all integers n, if n^2 is even then n is even. *Hint: Use contrapositive.*

3 Revisiting proofs 3

Parts of these assignments were adapted from **Discrete Mathematics**, Douglas E. Ensley and J. Winston Crawley, Wiley.

3.1 Exhaust A

Proof that if an integer n can be written in the form of z^3 for any integers z, then it must satisfy one of the following critera:

- n must be a multiple of 9,
- n must be 1 more than a multiple of 9, or
- n must be 1 less than a multiple of 9.

3.2 Exhaust B

Prove or disprove that for any integer n, $n^2 + 2$ is even.

3.3 Exhaust C

Prove or disprove that every integer not divisible by 3 had a square that is of the form 3k+1.

4 Revisiting proofs 4

In this section, use proof by induction to prove the given statement. Make sure to clearly **indicate your steps of induction** along with the **induction hypothesis** (I.H.).

4.1 Induction A

Prove that $n^2 + n$ is even for any positive integers n.

4.2 Induction B

Prove that $\sum_{i=1}^{N} i = \frac{(n)(n+1)}{2}$ for any positive integers N.

4.3 Induction C

Prove that $\sum_{i=1}^{N} i = \frac{(n)(n+1)(2n+1)}{6}$ for any positive integers N.