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My latest motivation to this course
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Deep Learning: Theories and Practices



Deep?
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Why Deep Learning?
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Fake videos of people - and how to
spot them

Delivered by Supasorn S. at TED 2018

APRIL2018 VVANCOUVERBC
Arnavda sldasunuatasasy
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By Dllu - Own work, CC BY-SA 4.0, |
https://commons.wikimedia.org/w/index.php?curid=64517567




Basics of all the Basics
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Artificial Intelligence

Intelligence spans a
very wide sScope,
even out of
\ | Search | Games Machine Learning
* Deep Learning is

just a small corner
In Machine
Learning
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Machine Learning Problems

Lo/

Unsupervised Learning

Supervised Learning /
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Machine Learning Problems

Reinforcement Learning Dimensionality Reduction
2 System
’ W
Pe W ol 7




Supervised Learning

Classification Regression COW J(t\\/l v OV
O-© ) [O=F
(A R
@) — M
@ -\ LM L

Discrae, Valdnes |
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Machine Learning Pipelines

Model trainer

Training set Transformer
Transformer I Model Predicted

parameters parameters output

Evaluate

Testing set

Problem

We wanted to create a model which given an input on one’s English
grade and score, returns an output whether xyr* English skills is good
or not.

* gender-neutral pronoun
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Dataset

Model trainer

Training set Transformer
Testing set Transformer I Model Predicted Evaluate

parameters parameters output

 The data where we’re interested in

 Contains both the expected “input” and the “output”
« Student A: IELTS 9, O-NET English 86, Good level of English
 Student B: IELTS 6, O-NET English 89, Insufficient level of English

=—> « Student B: [ELTS 8,9—NET English 92, Good level of English
7
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Train-Test Splitting

Model trainer

Training set Transformer
Transformer I Model Predicted

parameters parameters output

Evaluate

Testing set

* We need to split our data into two chunks:
* Training set, used to teach our model on how to "answer” based on this set.

* Testing set, used as the “answer key” to the model’s predicted output
 Testing with training set is cheating!

Deep Learning: Theories and Practices 20



Transformer

Training set Transformer Model trainer
Transformer I Model Predicted

parameters parameters output

Evaluate

Testing set

* Who is better between... ,[ %L,
e Student A: [ELTS 9, Q;NET English 86, Total: 95
 Student B: IELTS 6, O-NET English 89, Total: 95

 Transformer copes with ﬂwese kinds of troubies

~ (6%
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Model training

Model trainer

Training set Transformer
Transformer I Model Predicted

parameters parameters output

Evaluate

Testing set

 Create a model with the desired algorithm
» “Teach” the model with the training set data

¢ TE TS O..‘/}MQ
-ﬁ?e\'m’\r\ MG\D“'Ol

T .- v
£ lsﬂz Pohton \ E\,\g\,\f\-@\q 9\/\+ -
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Evaluation

Training set Transformer Model trainer
Transformer I Model Predicted

parameters parameters output

Evaluate

Testing set

* Feed the testing set into the same manner to the training set
* Get the model’s output, compare it to the true answer.

Deep Learning: Theories and Practices 23



Linear Regression

Deep Learning: Theories and Practices
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Linear Regression: A Short Example

Number of Number of WCs in |House price
bedrooms in house | house

2100000
4\ 3 4300000
2 1.5 0000
3 2 ?




Linear Regression

 Given this data, can we
determine the best line to

.. model the relationship between
o “Z,o
250 - (/’0’. X and Y?
o« 2 - = . i
L T » Which one is better-the blue or
S './’/. . the red?
N 2 « Which one is better-the blue or
Yy 27 the green?
F— %0 0 0 100 * Why this can’t be easily answered

like the former question”
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Linear Regression Model

Training set Transformer Model trainer
Transformer I Model Predicted

parameters parameters output

Evaluate

Testing set

Mathematics, here we go!

Deep Learning: Theories and Practices 27



Linear Regression Model

r N » Suppose we have our data
| M 1’\/\6\ B odeRew, eeL points =4, y, ..., Z,,
—
— * X = |x1,29,...,2,]
\ 0 ) Y\ J‘ [ ﬁ Mj@SQ\iW * Where does x, comes from?
——— &7 « We wanted to find the best

&7 value for W = Gwy, wo, ..., w, H
W, X \ . 1£1e scalar prodgct between W
> and X will be our model’s
X 1 returned values
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Good model: Ordinary Least Square

; , We need to “mathematically”

@ LM 9 M 2 - ) describe what a good model is
b M L« We can’t really tell h d

Z‘* _ y tell how goo
2 AN 2 Ve ;—f@i‘ models are, but at last we can
Cocre ~— & compare models performing on
€X0
Loty Ma the same task

(AN
\T)
A
—%
S
AN
\!
N\
cC—
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"
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A little math...

4( /L 4 L
K F.e_o\\'\m! es ";1\
A T <q
b‘ i ’\‘j/x- C\"'G W -VJL—XT_/ 3

L=4(y- ﬂQ
7\ ‘V\\V\\\N\ﬁﬂ, X)‘( =0
j?(ﬂi -\ %)
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Calculating Weights

L= 2 (4 - W' () 2
< % (=X (y- %)
= (MTy - g7 X v T ) \
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House Prediction Model

# of bedrooms | # of WCs rrice (M)
5
2 2 30
: f \52 —Traiv A0 1]
n /33 do, + 9 -
D0 52
2 1 27 2 Tent




Observation: Analytical method

* We solve our problem using
derivatives, then plug in those
numbers to the derived formula,
and voila-we obtain our equation!

* This is called analytical method-
using mathematical tools to solve

numericalproblems.

* The other method, of which we'll
certainly see, is computational
method.
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Perceptron

Deep Learning: Theories and Practices

34



yryrBE S

MR I I B R R
st&tt#’tttts;ct‘;gj‘i’

I Philmonic Oretwatrr PRINESEMAHIDOL - ALY

Thailand . ‘ ?

""'.,'!::

LN

35



,._—3_'_'_“»..3

L
s TV

|

i
:
T el i e S

Image courtesy: Lasvit






Why are we smart??

Dendrite

Axon Terminal

Node of
Ranvier

Cell body

prw K

Schwann cell

Myelin sheath
Nucleus

Wikimedia Commons / User:-Dhp1080 / CC BY-SA
(http://creativecommons.org/licenses/by-sa/3.0/)
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Introducing Perceptron

~N * The implementation of the
Perceptron consists of the
following feat

y  Activation function f =7
X200
a—J(Wp+h) Naydion (<) = 2
E;(c:arzteendgzo;r; Neural NetworK DesigrT(2r-gaftion ) m( /) 0 'J 0""/\er'$€
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Activation functions

Name Input/Output Relation | Teon | pit? ¢ ACtlvatlon fUﬂCtIOﬂS are Used tO
: 11 . : )
|0 | mtrodu;:e nonlinearity” to the
Symmetrical Hard Limit ::: :;3 hardlims percep ron . . .
. » Without the activation function,
T =T the perceptron will act only as a
i linear tool.
SymmetieSaaning |1, - What will this cause? We'll
I - ‘) - mention it Ia‘Fer. | |
et T o | 77 * Popular functions: Log-Sigmoid
e | 7 €2 Vo (Sigmoid), PosLin (ReLU), tansig
p E———— (tanh)
Compaive | 77} e compe

Table 2.1 Transfer Functions

-/ 40
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Perceptron as a linear regressor

* The perceptron model is quite
generalised: we can create a
linear regressor

* We simply use a linear function
forrg = x as the activation

function. Y= X
\ ) U | ) * The weights are w, and the bias
a=f(Wp+b) IS Wo- g8 - =A% !

Excerpted from Neural Network Design (2" edition) ?_ = ‘5 %& @.’
by Hagen et. al.
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The Mark | Perceptron

* Perceptron, despite being
“codes” right now, was intended
to be a hardware

* Mark | is the first
implementation of Perceptron
physically

* Managing 20x20 pixels image

By Source WPNFCCH#4), Fair use, * Manually wired, adaptive weight

https://en.wikipedia.org/w/index.php?curid=47541432 .

using motors
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A simple Perceptron classifier

* Given the following data, how Jv
can we determine the ol . e
Perceptron’s weight that can oo
classify the two groups of data? N ’
* Perceptron equation: N .
y = hardlim +b) .. e, o
« If WX ==b=theq tHe output will o .
be 1 4 —2 0 2 4 6

Deep Learning: Theories and Practices 43



A simple Perceptron classifier

* We can simply draw a line that
separates the data into two
classes

* From mathematical knowledge, we
know that this line is in the form of
equation W X +b=0 o-

* The weight vector Wis orthogonal to 41
the line

* The y-intercept of the boundary is
equal to —b 0

* Observe that there can be many
lines

10 A




A simple Perceptron classifier

. . f-2,21 /-
Try plugging in random data N e
. . Havi _
po!nt§ and observe |ts.be aviour Gy - - ,‘; . ( b0
* Thinking corner: what if the .| P s
vector I/ pointed into another o & 140 .°
direction? ’ ]

T L ¢r T 5 0 éﬂijé 6
(~A10), WX * (2 21[eq)-a=39 | C-z,2] L4 (k)

eep Learning: Theories and Practices 45




Can we do things better?

* Manually drawing weights is not

a good idea. . ) 6,10) _b

« “It was said that you would et e 7
destroy the manual works, not join * % wi2,2] -
them.” -Obi-wan Kenobi (didn’t a <
said this) ‘- \,r - o

* It will be soon desperate when . g So, o
you’re working with 3D data, and | e 7_4 0) e
iInfeasible when you’re working , i

with 4D data.

Deep Learning: Theories and Practices 46



Learning 101

Deep Learning: Theories and Practices
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Learning theory

* A field dedicated to methods for
algorithms to learn.

* Studies about the complexity Theory Research Group
and feasibility on learning
problems.

This theory, but not learning in this Theory Research Group.

Deep Learning: Theories and Practices 48



Unified Learning Rule

* Randomly initialise weights
* For z, in X, do

e * Calculate the output

y = hardlim(WX + b)
o : ‘ e Calculate the errore =t — o
‘- e W =W+ep

P ce=1, W =W+p
ce=—1,W=W-—p
ce=0W =W

* el =b+e

Deep Learning: Theories and Practices 49



Unified Learning Rule

c W' =

—>
]

* Randomly initialise weights
* For z, in X, do

* Calculate the output
y = hardlim(WX + b)

o Calculate theerrore=¢t—0 I/\

W +ep (

ce=1L,W=wt+p WZ (L
ce=—1, W =W-—p

e=0W=W

Deep Learning: Theories and Practices
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Unified Learning Rule

* Randomly initialise weights
* For z, in X, do

* Calculate the output
y = hardlim(WX + b)
e Calculate the error e = 13; 0
e W =W 4/¢ —
ieg. 4

e e=0,W
b =b+e
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Unified Learning Rule

* Randomly initialise weights
* For z, in X, do

* Calculate the output
y = hardlim(WX + b)
» Calculate the errore =t — o
e W =W+ep
ce=1, W =W+p
ce=—1 W =W-—p
ce=0W =W
b =b+e
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Unified Learning Rule

* Randomly initialise weights
* For z, in X, do

* Calculate the output
y = hardlim(WX + b)
» Calculate the errore =t — o
e W =W+ep
ce=1, W =W+p
ce=—1 W =W-—p
ce=0W =W
b =b+e
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Perceptron

...the embryo of an electronic computer that [the Navy]
expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence.

A Sociological Study of the Official History of the
Perceptrons Controversy, Mikel Olazaran

Deep Learning: Theories and Practices 54



AND and OR gates with Perceptron

AND gate OR gate

| /{\@\ | \A\I \
O O

o
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XOR gate with Perceptron

XOR Gate
I i I b
A\  Thinking corner: Why can’t a
O },\ | perceptron be used to create a
XOR gate?

Deep Learning: Theories and Practices 56



Linearly Separable Problems

* Perceptrons can solve linearly
separable problems

* Itis incapable of solving
nonlinearly separable problems

* You need two lines to separate
the XOR gate answers-this is
Incapable with Perceptron.

Wikimedia Commons / Elizabeth Goodspeed / CC BY-SA

https://creativecommons.org/licenses/by-sa/4.0
(http g y ) Deep Learning: Theories and Practices 57



Linearly Inseparable Problems

i o 4 0
h O @o
\ . 0 0

_<|>
Excerpted from Neural Network Design (2M edition)
by Hagen et. al.

Deep Learning: Theories and Practices
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How can we make sure it converge?

i\ | l;r X0 v\m‘:g | M \ﬁalﬂa\’}lﬂ
WM 1) 2
- (é (ﬂ*’ +-\H 22 - (”le/Iil) -
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Optimisation Problem

Deep Learning: Theories and Practices
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Taylor series

F(x) = F(x*)+dip(x)‘ (-2 « We can approximate a function
T according to its derivatives and
N lip(x) e ¥t higher order derivatives at a
2ax* | single point.
L ) * Taylor series will be used to
+ — (x—=x*) + .- ' t f
nl g approximate a performance
index of our model.
w .

Foox e L 4 ()

21l dx'

Xz7<
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Gradient

T .
_| o 0 0 * A gradient of function Fgrxg is
o = LES(_X) @(x) aan(:)} the partial derivation vector

w.r.t. to all of z,
8 N * We can denote such the value in
T K
p_VF(x) Tﬁ( ’\”\) an arbitrary direction of p by
projecting the gradient onto p.

VI

Ipl

XY
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V2F(x) =

2

0
0x,0x,

2
9 F(x)
0x]
2 52
F(x) —F(x)
aX2

0
0x,0x,

o° 5>

0x,0x, F(x) 0x,0x,

.

p' V2F(x)p
2
Ipl

F(x) ...

F(x) ...

9 F(x)
0xX10%, e A hessian of function FFzG is
o> Fx) the second order partial
0x,0%, derivation matrix w.r.t. to all of
o’ | =
@F(X) * In the same manner with

gradient, we can calculate the
direction of hessian on an

arbitrary direction of p.

Deep Learning: Theories and Practices
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Demo: Gradient of z = = + 2y=

* Try calculating the gradient by hands

* Try visualising the gradient with
https://www.geogebra.org/m/
sWsGNs86

* Try calculating the gradient on the
direction of p = |—2,1]

Deep Learning: Theories and Practices 64
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Quadratic Function and Directional Derivatives

X

Excerpted from Neural Network Design (2" edition)
by Hagen et. al.
Deep Learning: Theories and Practices 65



Performance Optimisation

For) = 35 -7 - L6

2 #ok)/

—

——

ol Local Minimum
‘\ Global lﬁinimum

% -1 0 1 \ 2
Excerpted from Neural Network Design (2" edition)
by Hagen et. al.
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Performance Optimisation

F(x* + AX)

=

T
5’5:??—’:"‘?‘?1’ /

a‘v;p;,':///

A

e
NS V2NN Wl

Excerpted from Neural Network Design (2" edition)
by Hagen et. al.

M ] WAOL
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How can we really optimise problems?

=

= ‘;i;nvn'\"i'i'i‘iii;
S
ARl

W o
N

) N
NN
[ 7/

LY
N2

Excerpted from Neural Network Design (2" edition)
by Hagen et. al.
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» Steepest Descent

Algorithm
* Motivation: f ST uyT <
/()
* How can we “move” on
this data efficiently?
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Steepest Descent Algorithm

Q{Nﬂ l' €v\\' DeSCCV\k

S
oS
<
o
- -
——
o

e ==
= sae

N ::;,;::.:; LN "‘1‘;- =
N =S :‘;‘3'910!!1‘ !
AR

7/
N

S
-
o
ST
R

4

Len AW
e

Excerpted from Neural Network Design (2" edition)
by Hagen et. al.
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Choosing the learning rate
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Choosing the learning rate

Deep Learning: Theories and Practices 71



tan (6)
10 4

Islnxdx = = (08X + (

I & slgx+C ,

- - -
i A,

M‘!‘Qi) =0
T a

w x’+2—£—x+(;‘%)’-(i)’+

]

-
o
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Photo by Alexander Hafemann on Unsplash


https://unsplash.com/@mlenny?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/iceberg?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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Previously on the Deep Learn Theory...
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Multilayer Perceptron

Deep Learning: Theories and Practices
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Vertically stacked Perceptron

Inputs Layer of S Neurons

* We can stack perceptrons
together and form a /ayer of

them
* These layer accepts the same
Input.
a=f(Wp+b)
Excerpted from Neural Network Design (2" edition)
by Hagen et. al. Deep Learning: Theories and Practices 77



Multilayer Perceptron

Inputs First Layer Second Layer\ p Third Layer N ° We Can COncatenate Iayers
>r——= =  together to form a multilayer
b31
. ! o perceptron
T s _ .
— o P s ¢ Stacking the perceptron in
S EESEs  either way enhances the
N system’s capability of being a

al = f1(Wip+b) a2 =f{2(W2al+h2) a3=f3(W3a2+b3)J more Complex mOdel

a3 = £3(W3f 2(W2f 1 (Wip+b1)+b2)+b3)
Excerpted from Neural Network Design (2" edition)
by Hagen et. al.
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Abbreviated Notation

Vertically stacked Perceptron
Input Layer of S Neurons

N N

p a
=P W \ Sx 1 »
SXR

1—>bj

R Sx1 S
\—/ \ J
a=f(Wp+b)

Excerpted from Neural Network Design (2" edition)
by Hagen et. al.

Multilayer Perceptron

Input First Layer Second Layer Third Layer

N\ N N7 A\
P W al W i’w *
1 2 3
Rx1 s1x1 52x1 $3x1
S'XR @l’fl " szm_\‘ ™ olf2 " sﬁxsz\ ™l '
s'x1 j s2x1 _/ $8x1
1 b! 1 b? 1P b
R S1x1 St 52x1 2 $8x1 3
—/ AN AN J
al =f1(Wip+b?) az=f2(Waal+h?) a3 = f3(W3az+b3)

a3 =3 (W3f2(W2f 1 (Wip+h)+h2) +b?)

Excerpted from Neural Network Design (2" edition)
by Hagen et. al.
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XOR with MLP

O

Deep Learning: Theories and Practices 80



XOR with MLP

Inputs Individual Decisions AND Operation

O N \ s \

ay
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Universal approximation theorem

A feed-forward network can
approximate continuous
functions on compact subsets
of real numbers

 The activation function must be
nonlinear

 Why?

Deep Learning: Theories and Practices 82



What does that mean?

) O  We can use them to

approximate weird functions like

2 handwriting recognition and
l — more.
* That’s where the magic of Deep

6 Learning lies!

Deep Learning: Theories and Practices
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Learning Problem’s Loss Function

Regression Classification

Deep Learning: Theories and Practices 84



Practical Neural Networks

Deep Learning: Theories and Practices
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TensorFlow Playground

playground.tensorflow.org

Deep Learning: Theories and Practices 86


https://playground.tensorflow.org/

otebook 1: Introducing Neural Network

& 1-Neural Networks - Jupyter - X e

C @ | O @ localhost:8888/notebooks/1 - Neural Networks.ipynb B -9 04+ » =
" Jupyter 1-Neural Networks (autosaved) A Logo
File Edit View Insert Cell Kernel Widgets Help Not Trusted ‘ Python 3 O
+ | @ B 4+ ¥ MRun B C W Code B
. Tt - - - ~
8 1033078 2 1 1 1 2 1 1
9 1033078 4 2 1 1 2 1 2
< >

Perceptron: The smallest component

Perceptron is a smallest component of a neural network, we can simply write the perceptron model to the following components:

X
X1 \W
2 \Wé

X3 —W3

WV

Observe that these are the main parts of the perceptron:

W1X1+WoXo+W3X3+...tWnpXp

13:43

" 10/03/2020 B
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Notebook 2: Handwriting Recognition

True: 9 True: 3 True: 3 True: 5 True: 5 True: 1 True: 2 True: 4 True: & True: 3
Pred-9 Pred-3 Pred:7 Pred:5 Pred:5 Pred:-1 Pred-2 Pred-4 Pred-6& Pred:3
885% 632% 442% 551% 893% 528% 941% 836% 502% 56.6%

0
5 E
0 5 0 5 0 > 0 5 0 > 0 5 0 5 0 5 0 5 0 5

True: 7 True: 0 True: 6 True: 1 True: 2 True: 7 True: 9 True: & True: 8 True: 7
Pred: 7 Pred:& Pred:& Pred:1 Pred:2 Pred:-7 Pred:-9 Pred:& Pred:1 Pred:5
43 7% 250% 502% 509% 1000% 603% 996% 502% 411% 26.5%

0
5 -
0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

Deep Learning: Theories and Practices

88



Backpropagation
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Gradient Descent Algorithm
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Stochastic Gradient Descent
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Backpropagation
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Notebook 3: Manual Backpropagation
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More on Deep Learning
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CNNs
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RNNs
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Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Autoencoders

Compressed Data

Original
mushroom
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-

Encode Decode

Source: https://www.pyimagesearch.com/2020/02/17/autoencoders-with-keras-tensorflow-and-deep-learning/
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Photo by Alexander Hafemann on Unsplash


https://unsplash.com/@mlenny?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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