Deep Learning: **Theories and Practices** Sirakorn Lamyai

Access to the slide materials

About me

Sirakorn Lamyai

- [Outsourced] TA, PTT GC, 2019-2020
- Former RA Intern, VISTEC, 2019
- Former RA Intern, VISTEC, 2018

Scope of interests: machine learning, deep learning, adversarial attacks

Senior project topic: Cluster-based Method for Adversarial Retraining on Deep Learning models

My latest motivation to this course

- 1.)วิชาเกี่ยวกับ การใช้ชีวิต, สร้าง Product, ศิลปะการใช้ชีวิต 30 หน่วยกิต [ค่อนข้าง useless]
- 2.)ฟิสิก เคมี ชีวะ แมท ดรออิ้ง แลปฟิ/เคม อิเล็กทรอนิค ไฟฟ้า 40หน่วยกิต [ฟิ เคม แมท ยากเกินไปจน uselesรมากกกก , ที่เหลือ so so]
- 3.)คอมจริงๆ (แต่เลือกเรียนได้ไม่อิสระเท่าไร) 71 หน่วยกิต [ค่อนข้าง usefull]
- 4.)วิชาง่ายๆ ไว้เก็บเกรด 6 หน่วยกิต [useless มาก คือ มก แค่อยากให้มีละบังคับทุกภาคเรียน เพื่อ?] เรียนได้สูงสุด 22 หน่วยกิต/เทอม ปกติ ม จะแนะนำเรา 20-21 หน่วยกิต
- **ชั่วโมงกิจกรรม ต้องครบ ไม่ครบไม่ได้เข้าพิธีรับปริญญาบัตร [บังคับเข้ากิจกรรม มันแปลกๆอะ เราให้ useless
 - Link to original forum topic removed in order to mitigate the risk from witch-hunting.
 - Original comments proposes a constructive criticism to the university's environment.
 - Please make no attempt to trace the real identity of the topic poster.
 - Please refrain from non-constructive comments to the thread, especially on mood and tone. This make no changes to what our friends are perceiving from the Department.

First Seme	ster 2016			
01200101	Innovative Thinking	A	1	
01204111	Computers & Programming B			
01355111	Foundation English I			
01355112	Foundation English II			
01355113	Foundation English III	m University po	3	
01417167	Engineering Mathematics I	C	3	
01420111	General Physics I	B+	3	
01420113	Laboratory in Physics I	Second Semester 2016		
01999021	Thai Language for Commun	Second Semester 2016		

sem. G.P.A. = 3.18

	Second Semester 2016						
	01208111	Engineering Drawing			3		
	01240011	Design in Everyday Life	В	3			
1	01403114	Lab.in Fundamentals of General Chemistry			1		
	01403117	Fundamentals of General Chemistry			3		
	01417168	68 Engineering Mathematics II			3		
l	01420112	General Physics II		В	3		
	01420114	1420114 Laboratory in Physics II First Semester		017			
	01999033 Arts of Living		I HOL COMICSION ZOTT				

sem. G.P.A. = 2.78

I HOL OCHIC	3101 2011		
01204211	Discrete Mathematics	A	3
01204212	Abstract Data Types & Problem Solving	Α	3
01204215	Object-Oriented Programming Laboratory	Α	1
01204222	Digital Systems Design	В	3
01204223	Practicum in Computer Engineering A		
01204312	Probability Theory & Stat. for Comp. Eng. B		
01205204	General Electronics I	C	3
01219211	1219211 Software Development Training Camp		
01417267	Engineering Mathematics III	D+	3
	sem. G.P.A. = 3.07 cum. G.P.A	A. = 2.99	

Deep Learning

Deep?

Why Deep Learning?

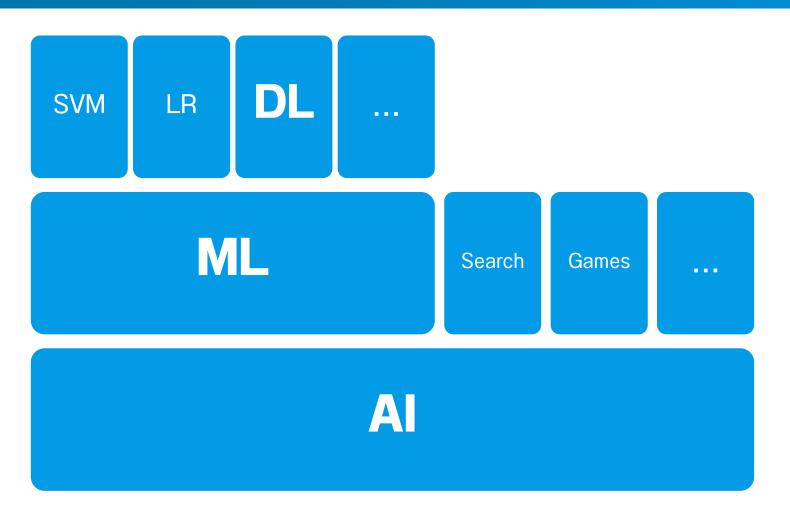
Video

Fake videos of people – and how to spot them

Delivered by Supasorn S. at TED 2018

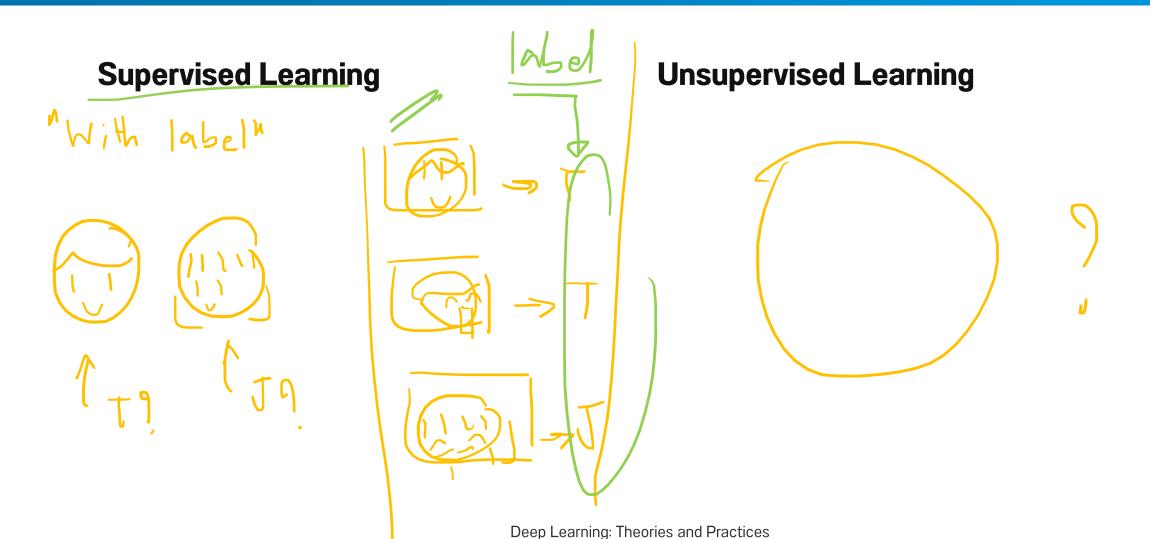
Basics of all the Basics

Artificial Intelligence



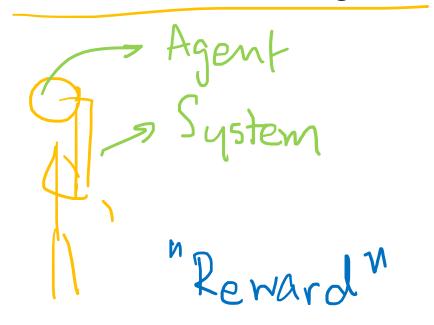
- Artificial Intelligence spans a very wide scope, even out of Machine Learning
- Deep Learning is just a small corner in Machine Learning

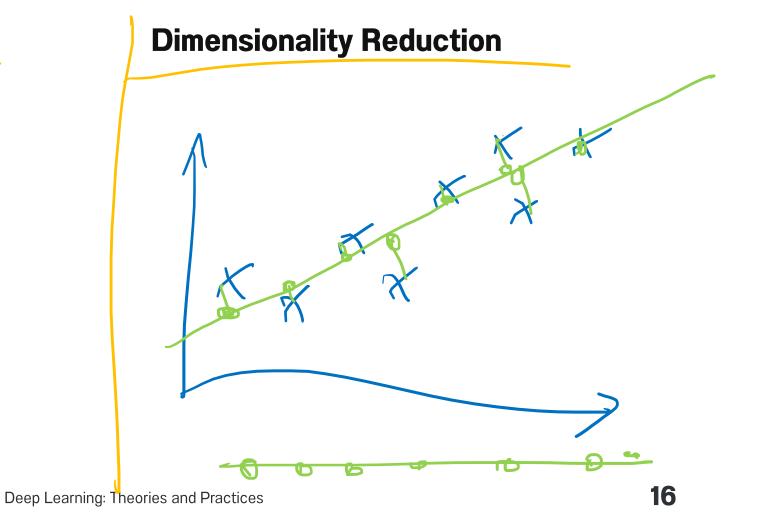
Machine Learning Problems



Machine Learning Problems

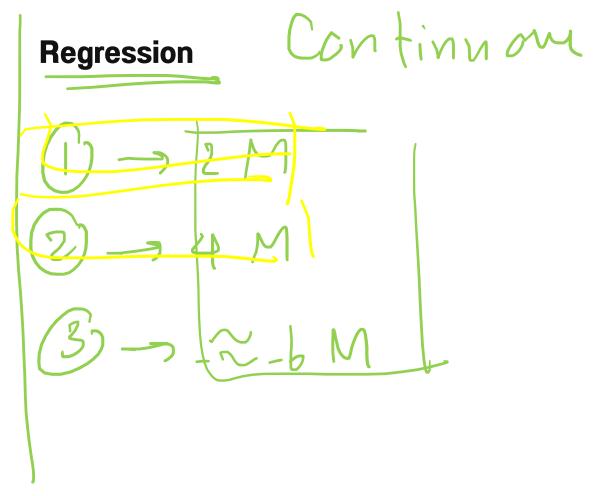
Reinforcement Learning



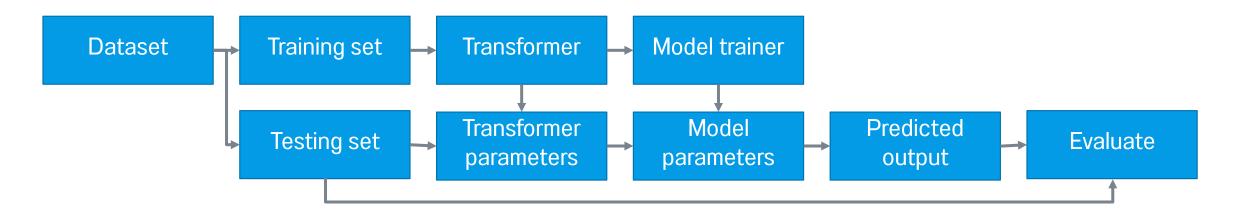


Supervised Learning





Machine Learning Pipelines

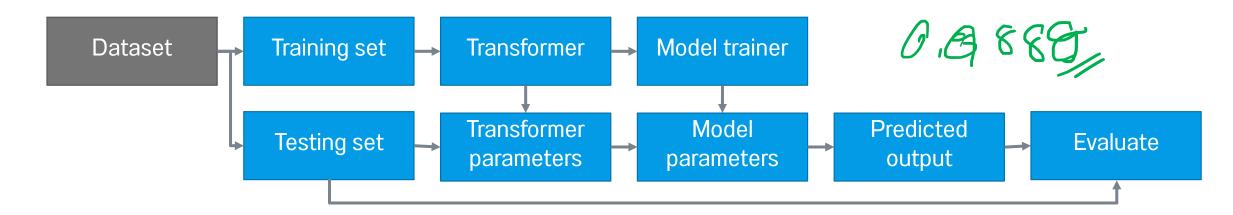


Problem

We wanted to create a model which given an input on one's English grade and score, returns an output whether xyr* English skills is good or not.

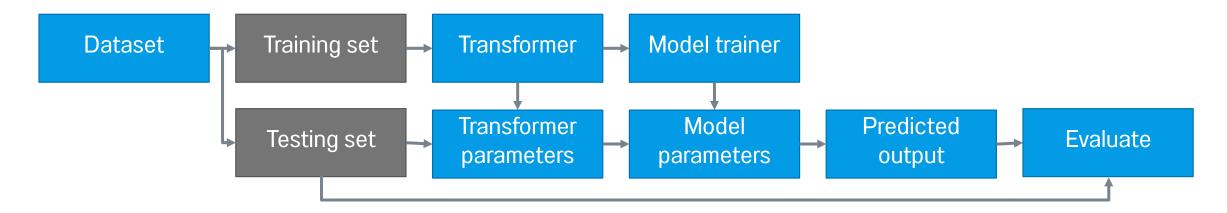
^{*} gender-neutral pronoun

Dataset



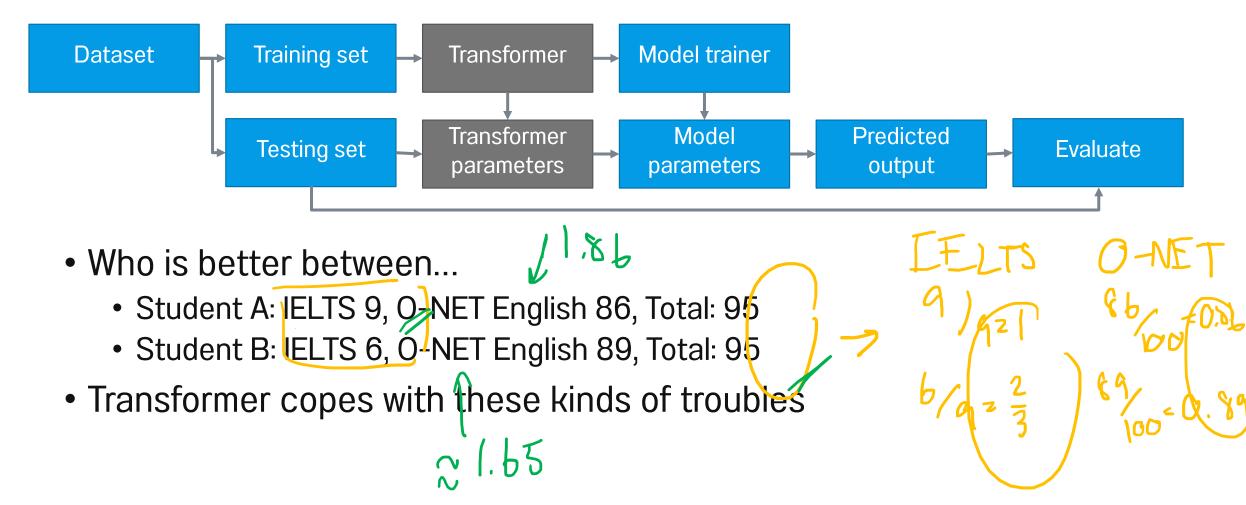
- The data where we're interested in
- Contains both the expected "input" and the "output"
- Student A: IELTS 9, O-NET English 86, Good level of English
 - Student B: IELTS 6, O-NET English 89, Insufficient level of English
- Student B: IELTS 8, O-NET English 92, Good level of English

Train-Test Splitting

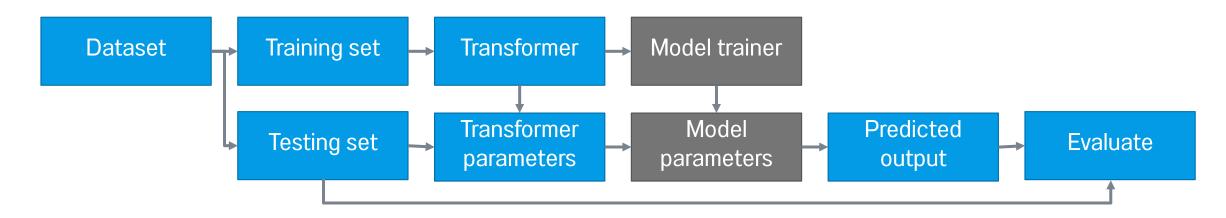


- We need to split our data into two chunks:
 - Training set, used to teach our model on how to "answer" based on this set.
 - Testing set, used as the "answer key" to the model's predicted output
 - Testing with training set is cheating!

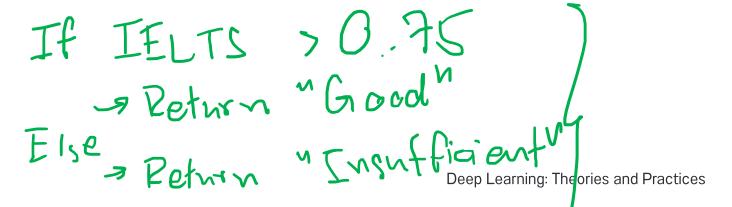
Transformer



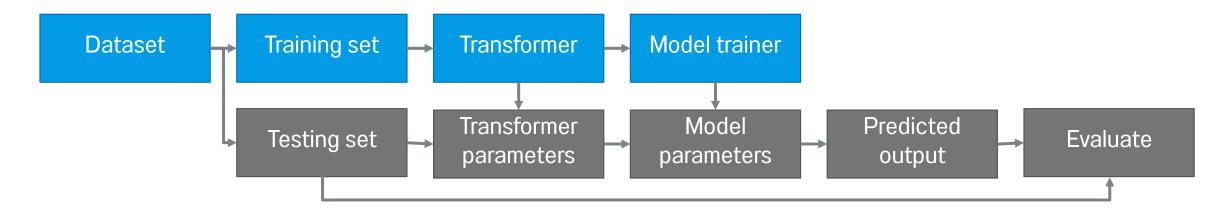
Model training



- Create a model with the desired algorithm
- "Teach" the model with the training set data



Evaluation



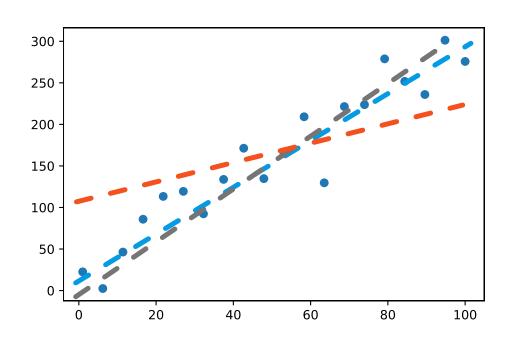
- Feed the testing set into the same manner to the training set
- Get the model's output, compare it to the true answer.

Linear Regression

Linear Regression: A Short Example

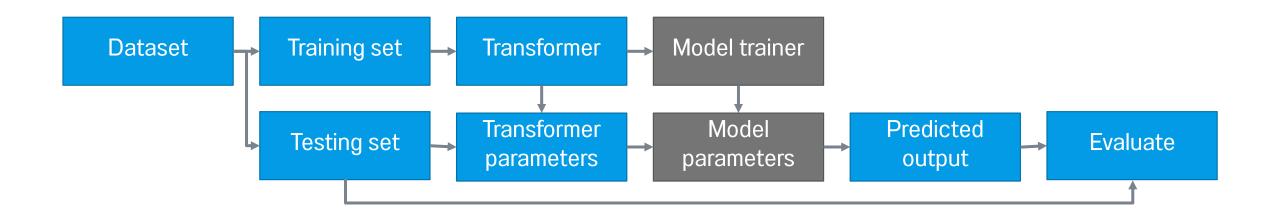
Number of bedrooms	Number o house	f WCs in House price
2		2100000
4	3	430000
2	1.5	2150000
3	2	?
87P1 = (1M) x 9		3200,000 eories and Practices 25

Linear Regression



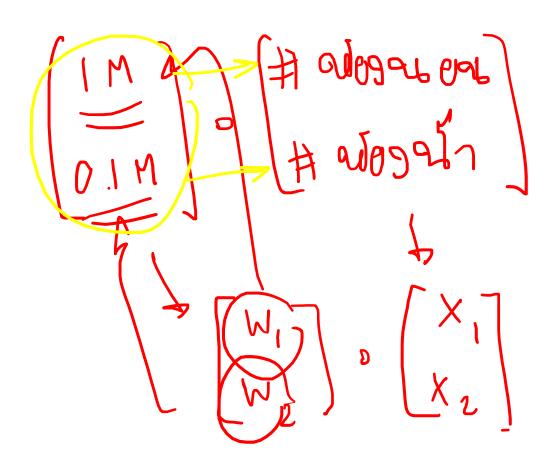
- Given this data, can we determine the **best line** to model the relationship between X and Y?
- Which one is better-the blue or the red?
- Which one is better-the blue or the green?
 - Why this can't be easily answered like the former question?

Linear Regression Model



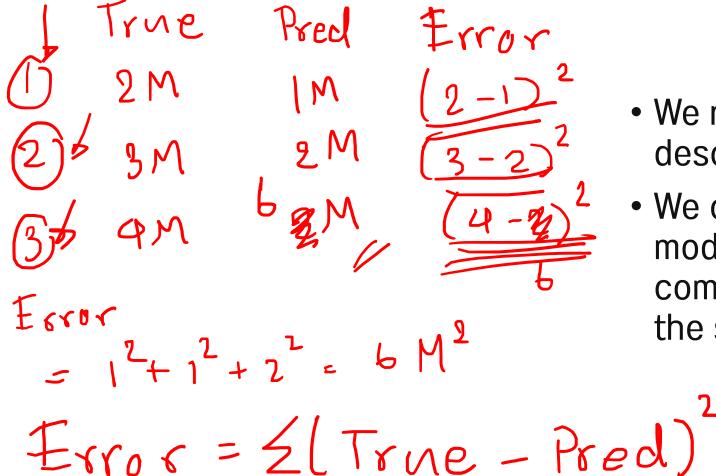
Mathematics, here we go!

Linear Regression Model



- Suppose we have our data points $x_1, x_2, ..., x_n$
- $X = [x_1, x_2, \dots, x_n]$
 - Where does x_0 comes from?
- We wanted to find the best value for $W = \dot{\mathbf{G}}w_1, w_2, \dots, w_n \hat{\mathbf{H}}$
- The scalar product between W and X will be our model's returned values

Good model: Ordinary Least Square



- We need to "mathematically" describe what a good model is
- We can't really tell how good models are, but at last we can compare models performing on the same task

A little math...

$$W = \begin{bmatrix} W_0 & W_1 & W_2 & -W_1 & T \\ X_2 & M_1 & X_2 & -X_2 & T \end{bmatrix}$$

$$X = \begin{bmatrix} W_0 & W_1 & W_2 & -W_2 & T \\ X_1 & M_1 & M_2 & M_2 & T \end{bmatrix}$$

$$Y = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 & T \\ W_0 & W_1 & M_2 & T \end{bmatrix}$$

$$W = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 & T \\ W_1 & W_2 & W_2 & T \end{bmatrix}$$

$$W = \begin{bmatrix} W_1 & W_1 & W_2 & W_2 & T \\ W_2 & W_1 & W_2 & T \end{bmatrix}$$
Deep Learning: Theories and Practices

Calculating Weights

$$L = 2(Y_1 - W^T \times_i)$$

$$= 2(Y - XW)^T (Y - XW)$$

$$= (Y^T Y - 2Y^T \times W + W^T \times T \times W)$$

$$= X^T \times W - M^T \times W$$

$$W = (X^T \times W)^{-1} \times T \times W$$

House Prediction Model

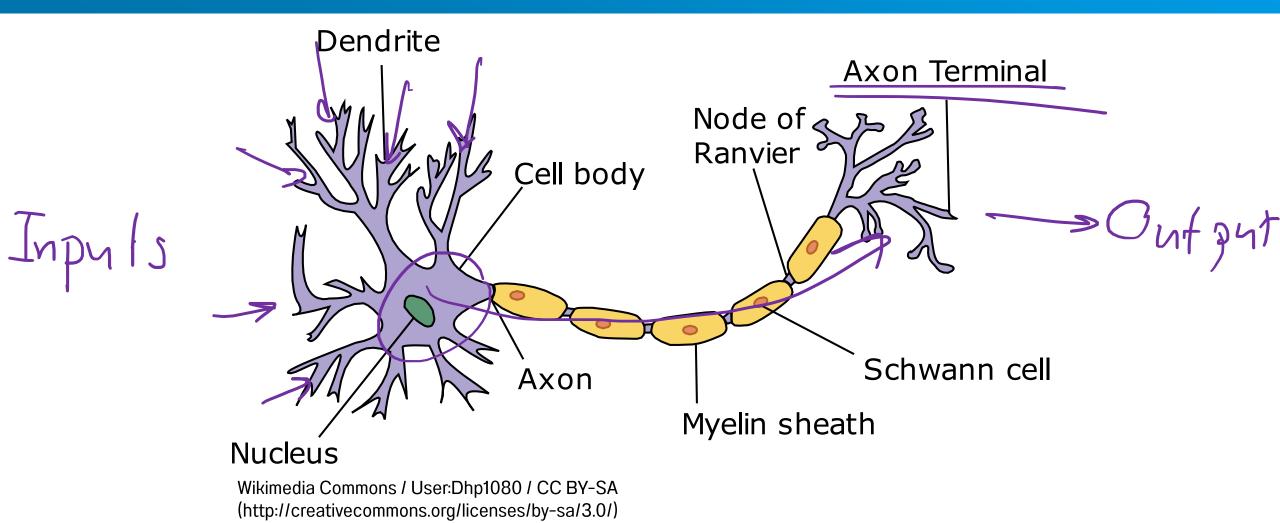
	# of bedrooms	# of WCs	Price (M)	$\int W = (X^T \times)^{-1} \times^T Y$
	3	2	35	
	2	2	30	
	4	2	47	Train
1,	2	1	28	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	4	3	50	40 + 19 = 52
	3	2	33"	
	2	1	27	of ent
				7
		N A	House	Price = 9.88 × # 5edr + 3.08 × # 200 3
	× =	M=		+ 3.08 × 4 WC 3

Observation: Analytical method

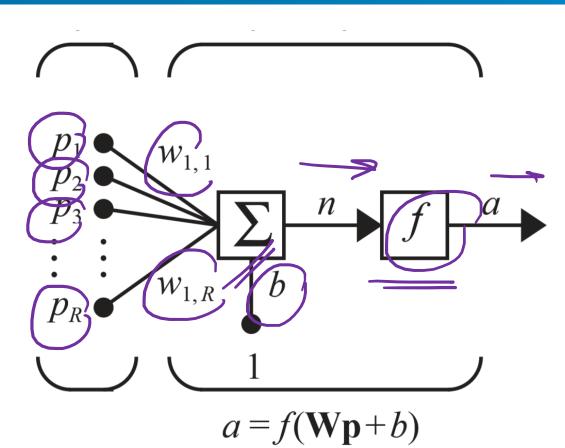
- We solve our problem using derivatives, then plug in those numbers to the derived formula, and voila—we obtain our equation!
- This is called analytical methodusing mathematical tools to solve numerical problems.
- The other method, of which we'll certainly see, is computational method.

Perceptron

Why are we smart?



Introducing Perceptron



Excerpted from Neural Network Design (2nd edition)

by Hagen et. al.

 The implementation of the Perceptron consists of the following features

- Inputs: p_1, p_2, \dots, p_R Inputs' weights: w_1, w_2, \dots, w_R
- Linear combination Σ
- Activation function

Activation functions

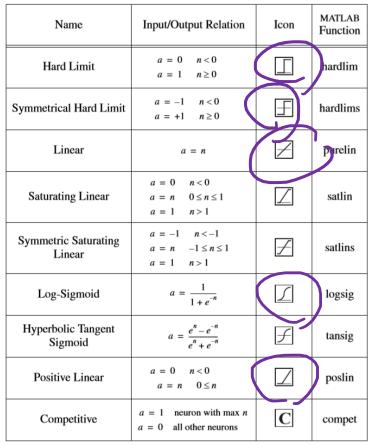
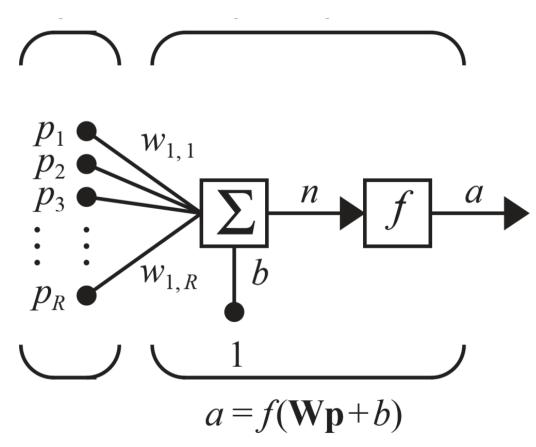


Table 2.1 Transfer Functions

- Activation functions are used to introduce "nonlinearity" to the perceptron
- Without the activation function, the perceptron will act only as a linear tool.
 - What will this cause? We'll mention it later.
- Popular functions: Log-Sigmoid (Sigmoid), PosLin (ReLU), tansig (tanh)

Perceptron as a linear regressor

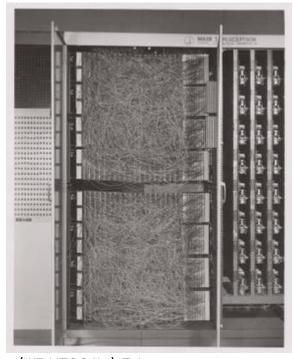


Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

- The perceptron model is quite generalised: we can create a linear regressor
- We simply use a linear function $f_{\mathfrak{A}}x\mathfrak{B}=x$ as the activation function.

• The weights are w_i and the bias is w_0 . $w_i = 9.88$

The Mark I Perceptron



By Source (WP:NFCC#4), Fair use, https://en.wikipedia.org/w/index.php?curid=47541432

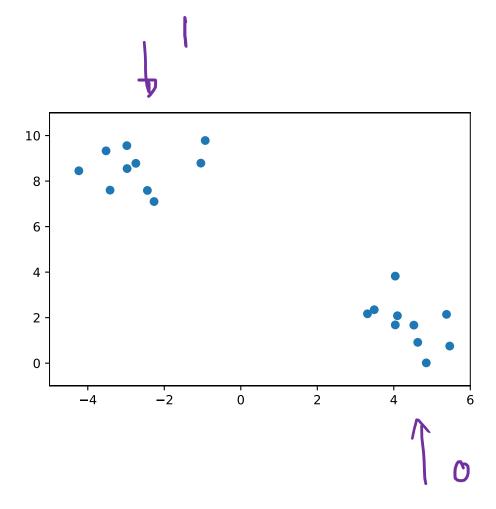
- Perceptron, despite being "codes" right now, was intended to be a hardware
- Mark I is the first implementation of Perceptron physically
- Managing 20x20 pixels image
- Manually wired, adaptive weight using motors

A simple Perceptron classifier

- Given the following data, how can we determine the Perceptron's weight that can classify the two groups of data?
- Perceptron equation:

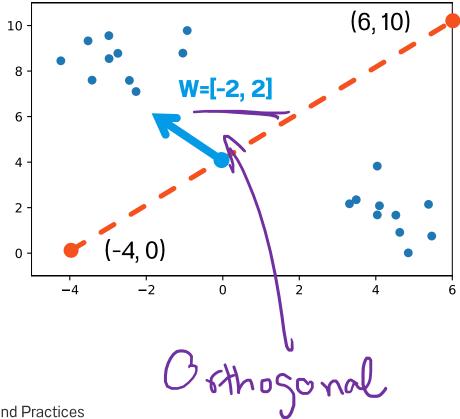
$$\hat{y} = \text{hardlim}(WX + b)$$

• If $W^TX \ge b$, then the output will be 1.

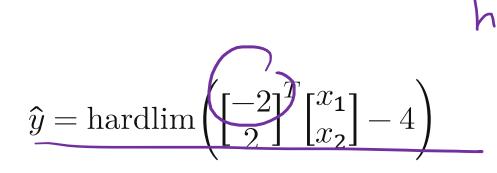


A simple Perceptron classifier

- We can simply draw a line that separates the data into two classes
- From mathematical knowledge, we know that this line is in the form of equation $W^TX+b=0$
 - ullet The weight vector W is orthogonal to the line
 - The y-intercept of the boundary is equal to -b
- Observe that there can be many lines



A simple Perceptron classifier



- Try plugging in random data points and observe its behaviour
- Thinking corner: what if the vector W pointed into another direction?

$$(-4) (0) (6, 10)$$

$$(-4, 0)$$

$$(-4, 0)$$

$$(-4, 0)$$

$$(-2, 2]$$

$$(-2, 2]$$

$$(-1) - 4$$

$$(-4, 0)$$

$$(-2, 2]$$

$$(-1) - 4$$

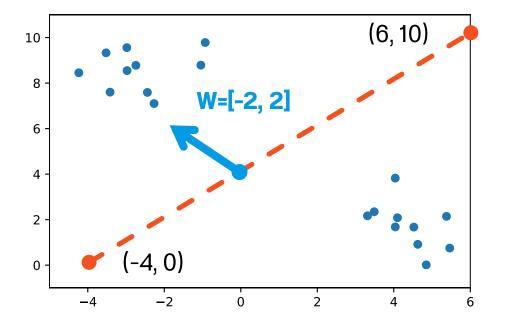
$$(-4, 0)$$

$$(-2, 2]$$

$$(-1) - 4$$

Can we do things better?

- Manually drawing weights is not a good idea.
 - "It was said that you would destroy the manual works, not join them." – Obi-wan Kenobi (didn't said this)
 - It will be soon desperate when you're working with 3D data, and infeasible when you're working with 4D data.

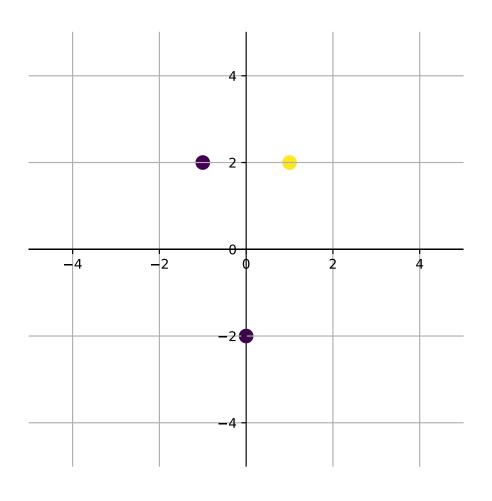


Learning 101

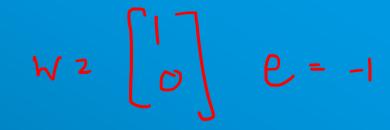
Learning theory

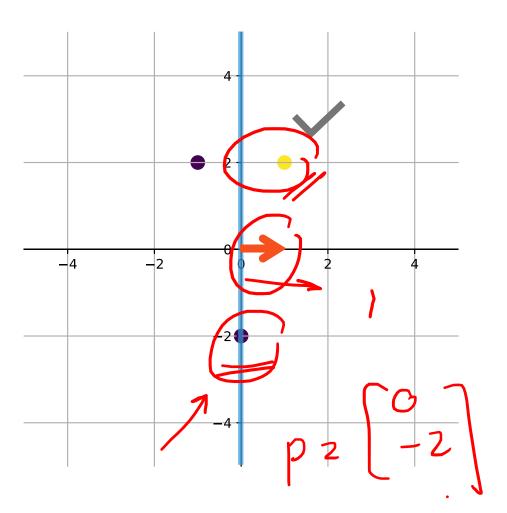
- A field dedicated to methods for algorithms to learn.
- Studies about the complexity and feasibility on learning problems.

This theory, but not learning in this Theory Research Group.



- Randomly initialise weights
- For x_i in X, do
- Calculate the output $\hat{y} = \text{hardlim}(WX + b)$
 - Calculate the error e = t o
 - W' = W + ep
 - e = 1, W' = W + p
 - e = -1, W' = W p
 - e = 0, W' = W
 - b' = b + e





- Randomly initialise weights
- For x_i in X, do
- Calculate the output

$$\hat{y} = \text{hardlim}(WX + b)$$

• Calculate the error e=t-o• W'=W+ep• $e=1,\,W'=W+p$

•
$$W'-W+en$$

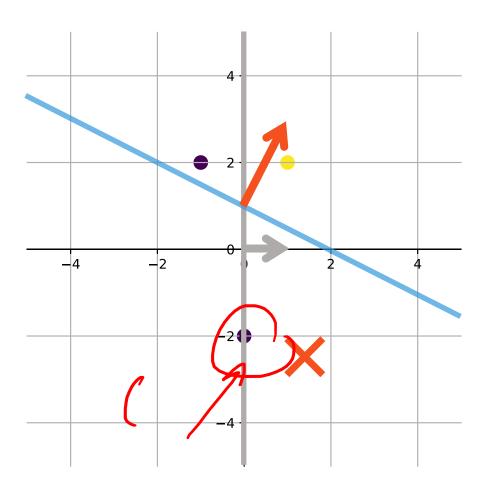
•
$$e = 1, W' = W + p$$

•
$$e = -1, W' = W - p$$

•
$$e = 0, W' = W$$

•
$$b' = b + e$$

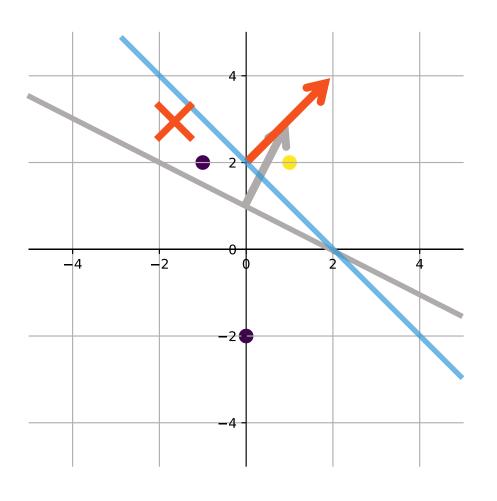
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + (-1) \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$



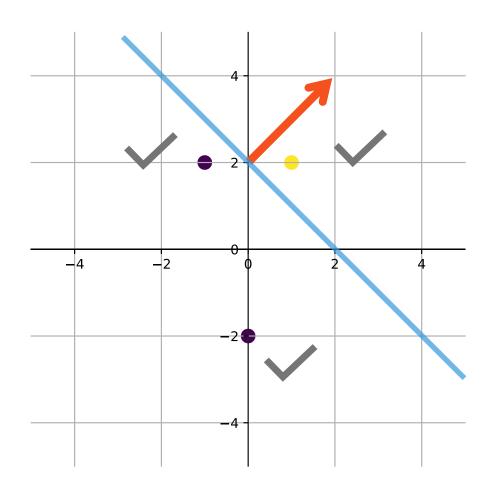
- Randomly initialise weights
- For x_i in X, do
- Calculate the output $\hat{y} = \text{hardlim}(WX + b)$
 - Calculate the error e = t o

$$\begin{array}{c} \bullet \ W' = W + ep \\ \hline \bullet \ e = 1, \ W = W + p \\ \bullet \ e = -1, \ W = W - p \\ \bullet \ e = 0, \ W' = W \end{array}$$

•
$$b' = b + e$$



- Randomly initialise weights
- For x_i in X, do
- Calculate the output $\hat{y} = \text{hardlim}(WX + b)$
 - Calculate the error e = t o
 - W' = W + ep
 - e = 1, W' = W + p
 - e = -1, W' = W p
 - e = 0, W' = W
 - b' = b + e



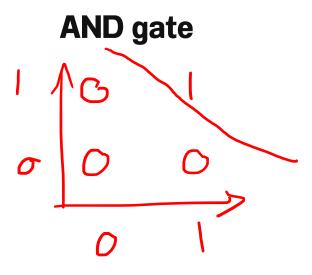
- Randomly initialise weights
- For x_i in X, do
- Calculate the output $\hat{y} = \text{hardlim}(WX + b)$
 - Calculate the error e = t o
 - W' = W + ep
 - e = 1, W' = W + p
 - e = -1, W' = W p
 - e = 0, W' = W
 - b' = b + e

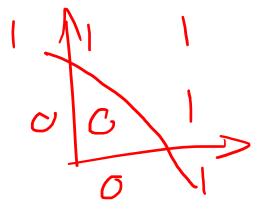
Perceptron

...the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

A Sociological Study of the Official History of the Perceptrons Controversy, Mikel Olazaran

AND and OR gates with Perceptron



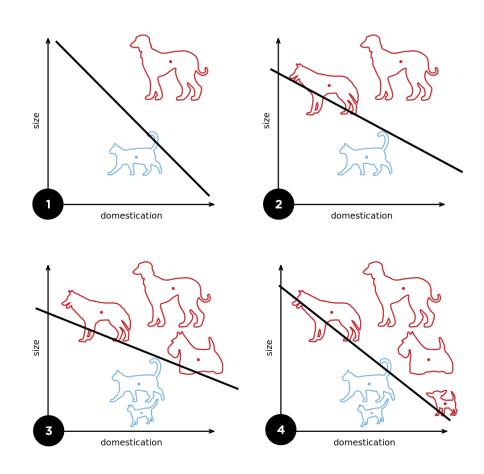


XOR gate with Perceptron

XOR Gate

 Thinking corner: Why can't a perceptron be used to create a XOR gate?

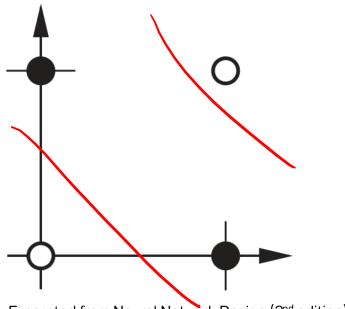
Linearly Separable Problems



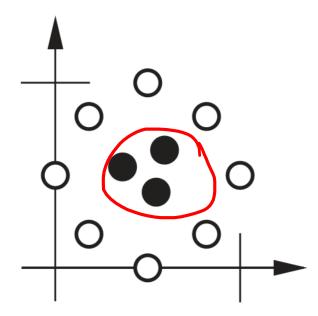
- Perceptrons can solve linearly separable problems
- It is incapable of solving nonlinearly separable problems
- You need two lines to separate the XOR gate answers—this is incapable with Perceptron.

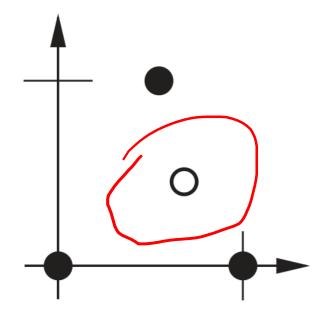
Wikimedia Commons / Elizabeth Goodspeed / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

Linearly Inseparable Problems

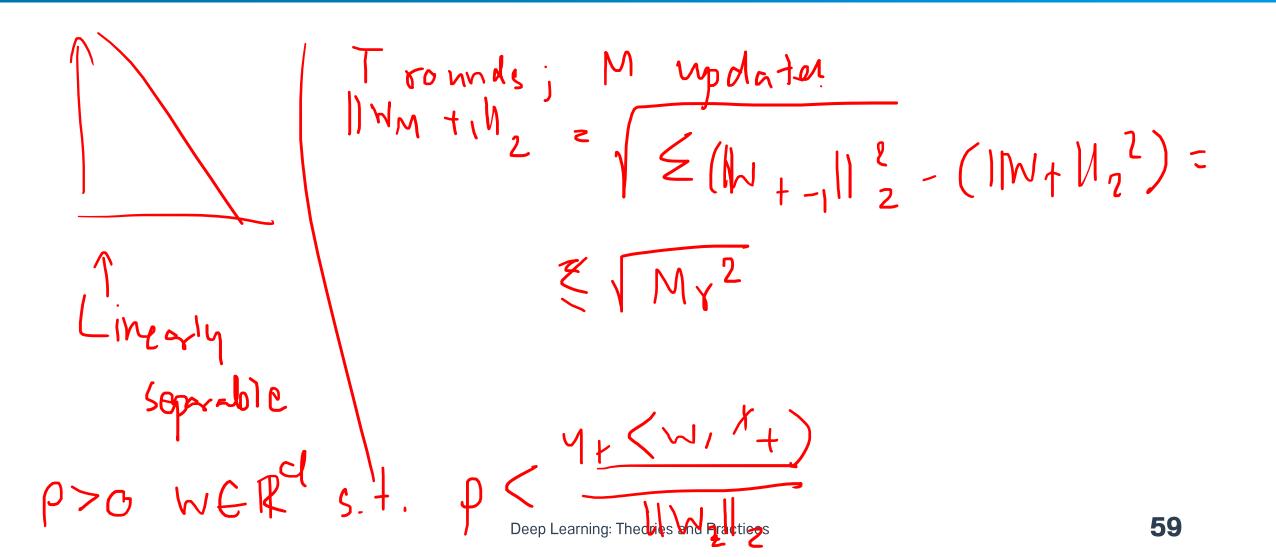


Excerpted from Neural Network Design (2nd edition) by Hagen et. al.





How can we make sure it converge?



Optimisation Problem

Taylor series

$$F(x) = F(x^*) + \frac{d}{dx}F(x)\Big|_{x = x^*} (x - x^*)$$

$$+ \frac{1}{2} \frac{d^2}{dx^2} F(x) \Big|_{x = x^*} (x - x^*)^2 + \cdots$$

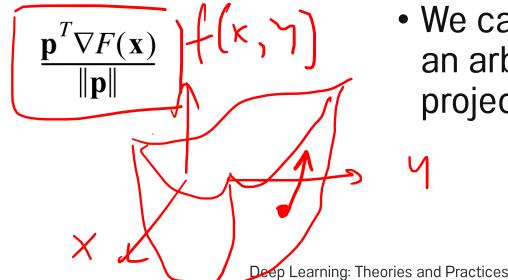
$$+ \frac{1}{n!} \frac{d^n}{dx^n} F(x) \Big|_{x = x^*} (x - x^*)^n + \cdots$$

- We can approximate a function according to its derivatives and higher order derivatives at a single point.
- Taylor series will be used to approximate a performance index of our model.

$$F(x)$$
 $\chi \leq \frac{1}{i!} \frac{di}{dx^i} f(x) |_{X = x^*}$

Gradient

$$\nabla F(\mathbf{x}) = \left[\frac{\partial}{\partial x_1} F(\mathbf{x}) \frac{\partial}{\partial x_2} F(\mathbf{x}) \dots \frac{\partial}{\partial x_n} F(\mathbf{x}) \right]^T$$



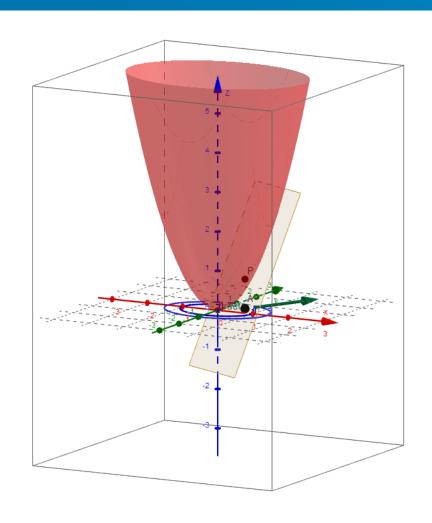
- A gradient of function $F_{\mathfrak{A}}x_{\mathfrak{B}}$ is the partial derivation vector w.r.t. to all of x_i
- We can denote such the value in an arbitrary direction of p by projecting the gradient onto p.

Hessian

$$\nabla^{2}F(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2}}{\partial x_{1}^{2}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{1}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{1}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{2}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{2}^{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{2}\partial x_{n}}F(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}^{2}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac{\partial^{2}}{\partial x_{n}\partial x_{2}}F(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n}\partial x_{n}}F(\mathbf{x}) \\ \frac{\partial^{2}}{\partial x_{n}\partial x_{1}}F(\mathbf{x}) & \frac$$

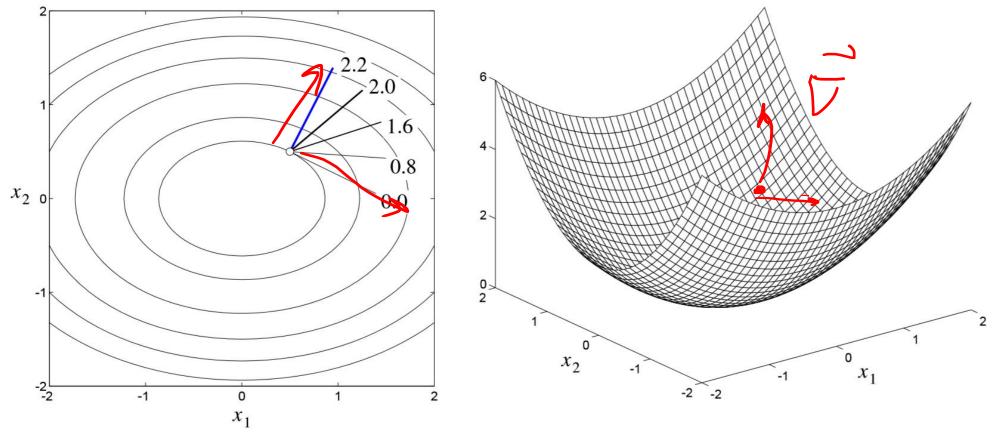
- gradient, we can calculate the direction of hessian on an arbitrary direction of p.

Demo: Gradient of $z = x \leq +2y \leq$



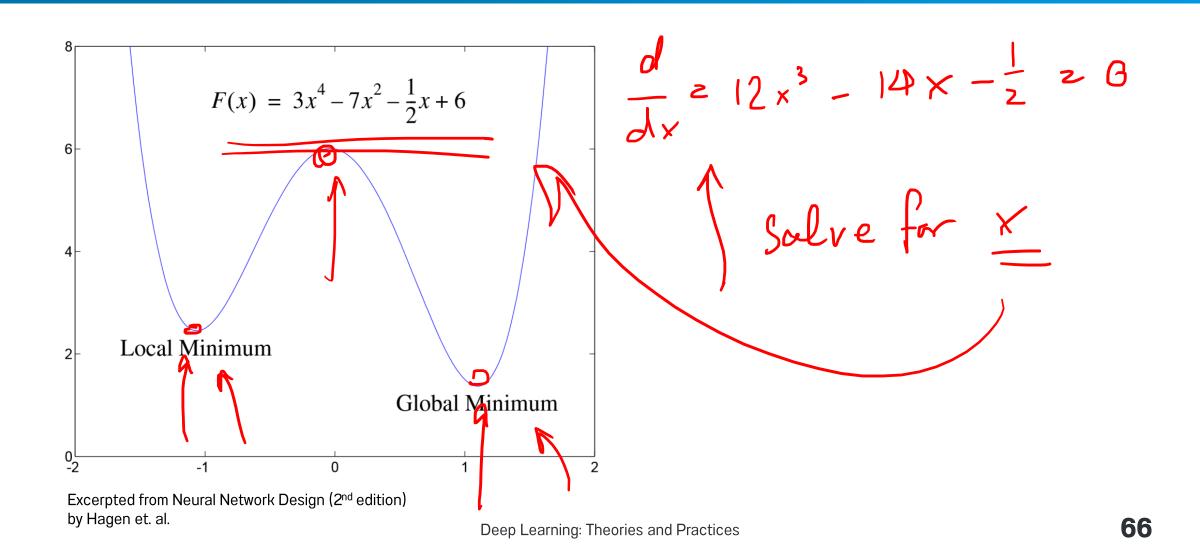
- Try calculating the gradient by hands
- Try visualising the gradient with <u>https://www.geogebra.org/m/</u> sWsGNs86
- Try calculating the gradient on the direction of p=[-2,1]

Quadratic Function and Directional Derivatives

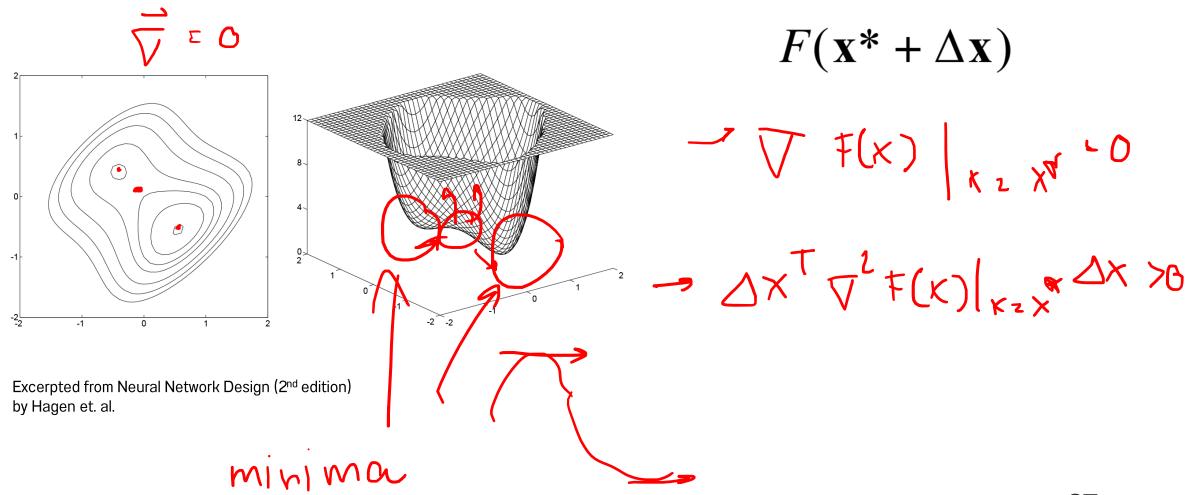


Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

Performance Optimisation

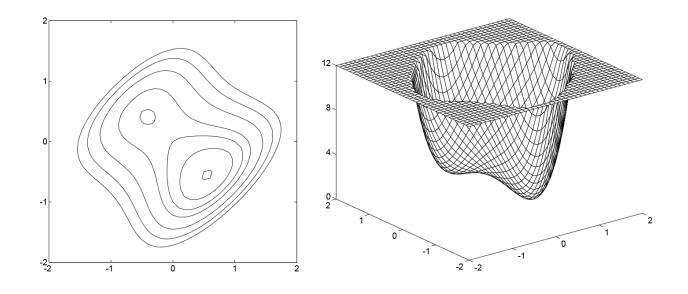


Performance Optimisation



Deep Learning: Theories and Practices

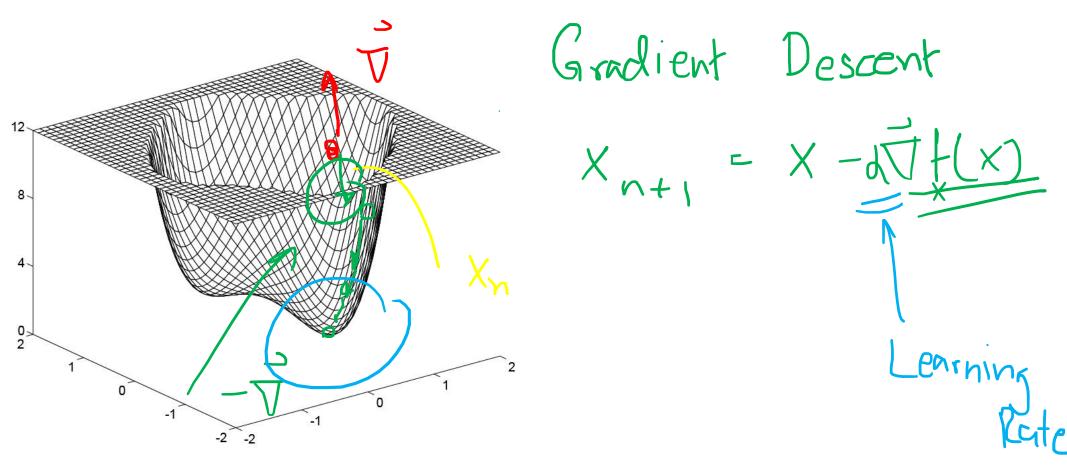
How can we really optimise problems?



Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

- Steepest Descent Algorithm
 - Motivation: $f \in x_{i \succcurlyeq \not \succcurlyeq} \mathfrak{T} < f(x)$
 - How can we "move" on this data efficiently?

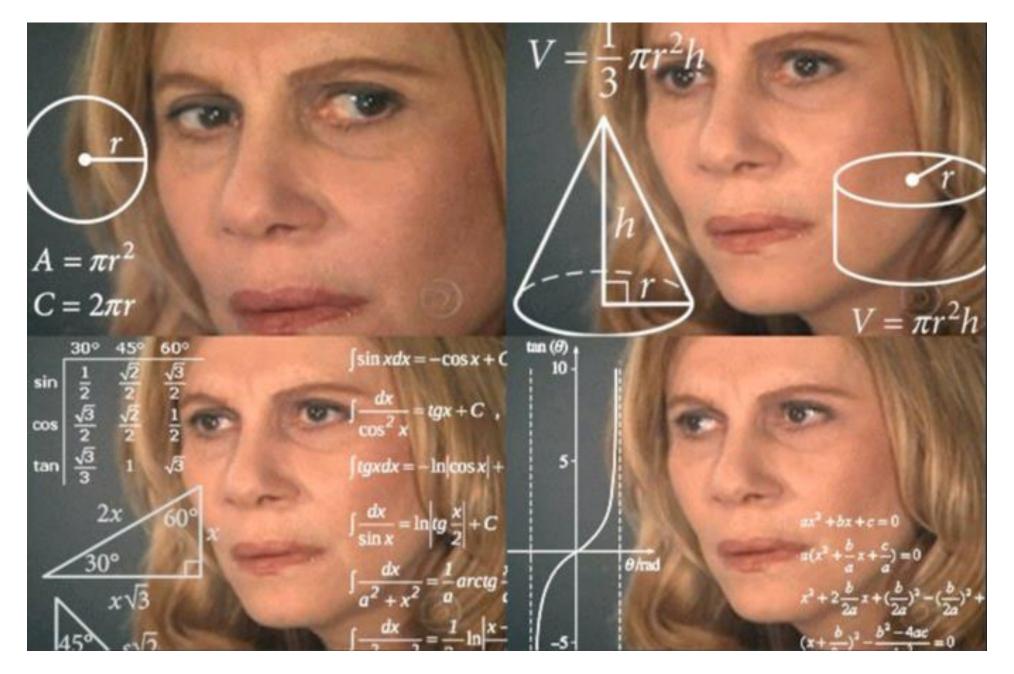
Steepest Descent Algorithm



Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

Choosing the learning rate

Choosing the learning rate

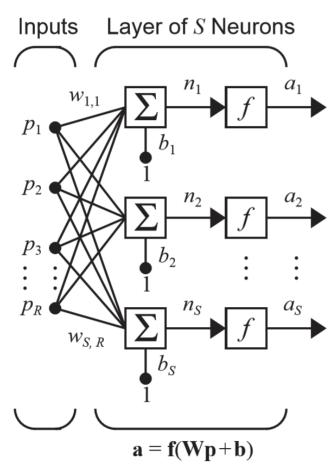


INTERMISSION

Previously on the Deep Learn Theory...

Multilayer Perceptron

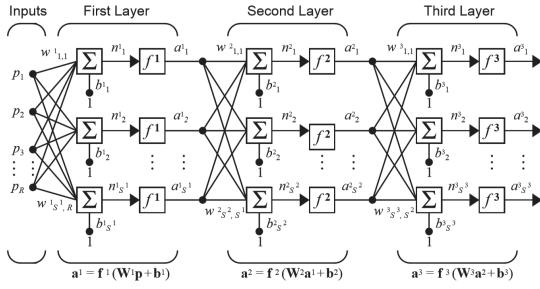
Vertically stacked Perceptron



- We can stack perceptrons together and form a *layer* of them
- These layer accepts the same input.

Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

Multilayer Perceptron



 $\mathbf{a}^3 = \mathbf{f}^3 (\mathbf{W}^3 \mathbf{f}^2 (\mathbf{W}^2 \mathbf{f}^1 (\mathbf{W}^1 \mathbf{p} + \mathbf{b}^1) + \mathbf{b}^2) + \mathbf{b}^3)$

Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

- We can concatenate layers together to form a multilayer perceptron
- Stacking the perceptron in either way enhances the system's capability of being a more complex model

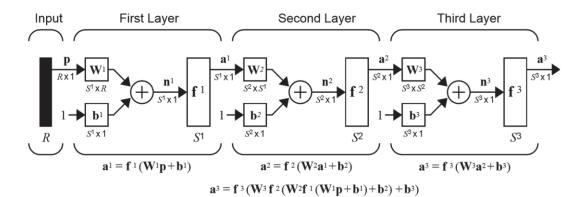
Abbreviated Notation

Vertically stacked Perceptron

Input Layer of S Neurons \mathbf{f} \mathbf{f} \mathbf{g} \mathbf{g}

 $\mathbf{a} = \mathbf{f}(\mathbf{W}\mathbf{p} + \mathbf{b})$

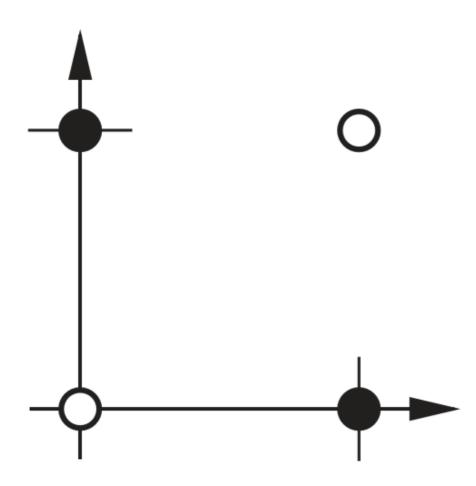
Multilayer Perceptron



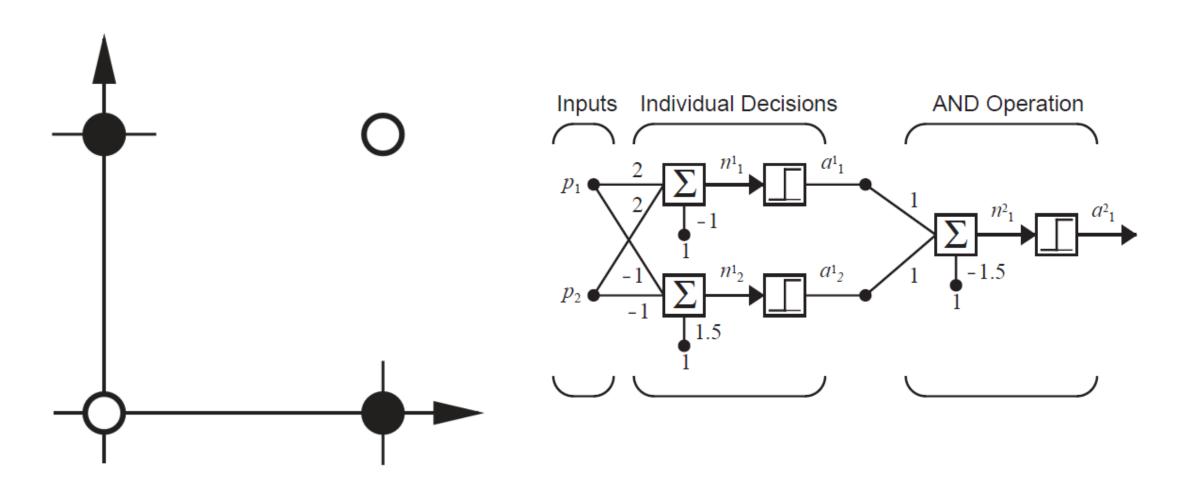
Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

Excerpted from Neural Network Design (2nd edition) by Hagen et. al.

XOR with MLP



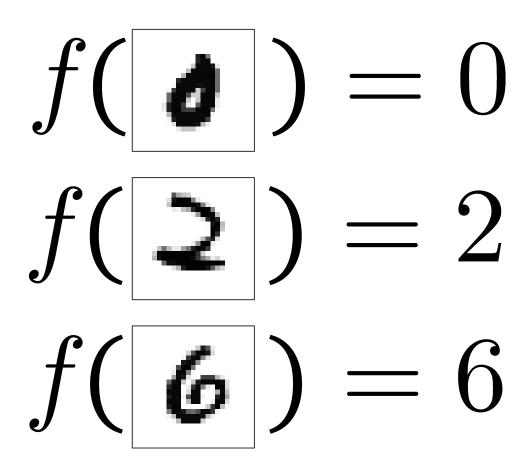
XOR with MLP



Universal approximation theorem

- A feed-forward network can approximate continuous functions on compact subsets of real numbers
- The activation function must be nonlinear
 - Why?

What does that mean?



- We can use them to approximate weird functions like handwriting recognition and more.
- That's where the magic of Deep Learning lies!

Learning Problem's Loss Function

Regression

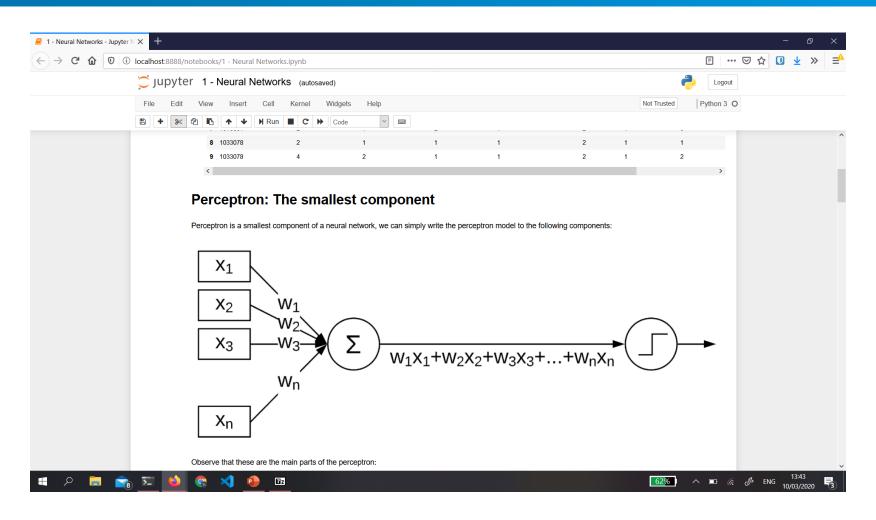
Classification

Practical Neural Networks

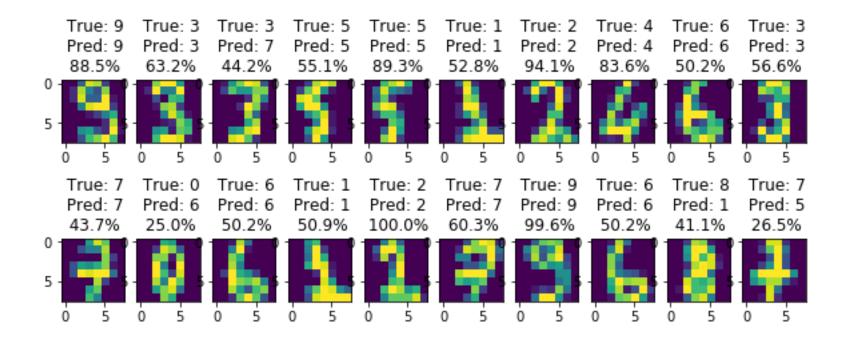
TensorFlow Playground

playground.tensorflow.org

Notebook 1: Introducing Neural Network



Notebook 2: Handwriting Recognition



Backpropagation

Gradient Descent Algorithm

Stochastic Gradient Descent

Backpropagation

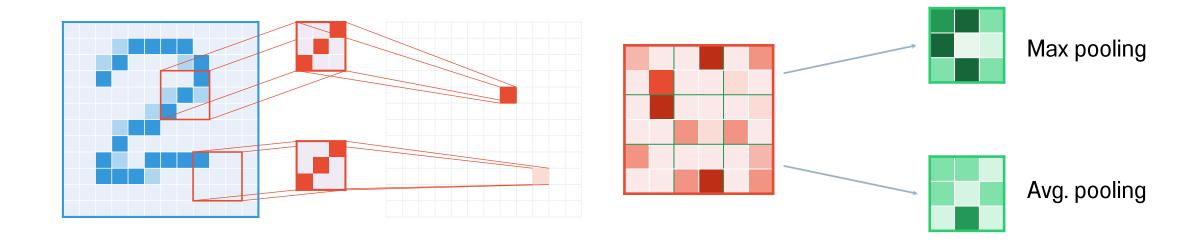
Notebook 3: Manual Backpropagation

More on Deep Learning

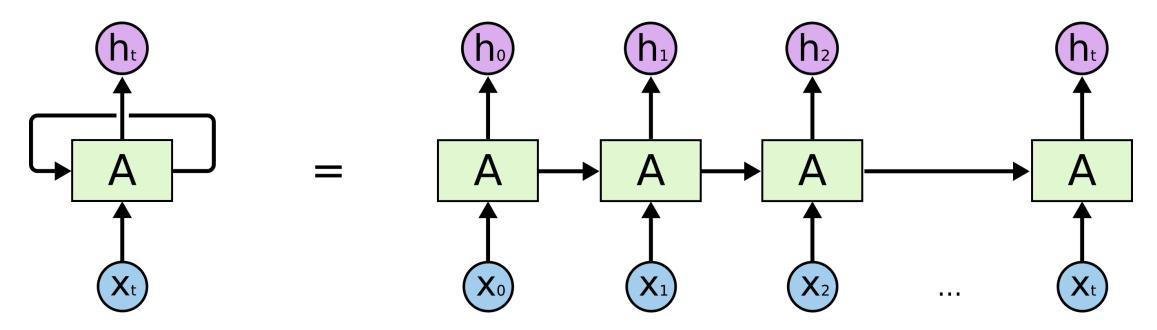
CNNs

Convolution Layer

Pooling Layer

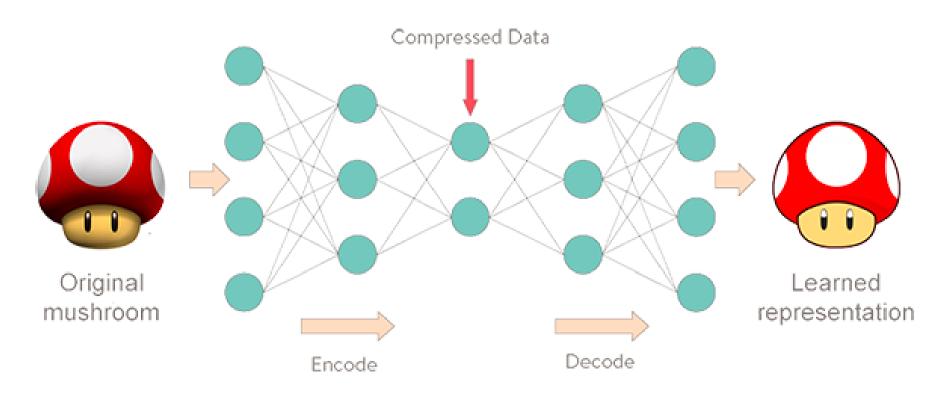


RNNs



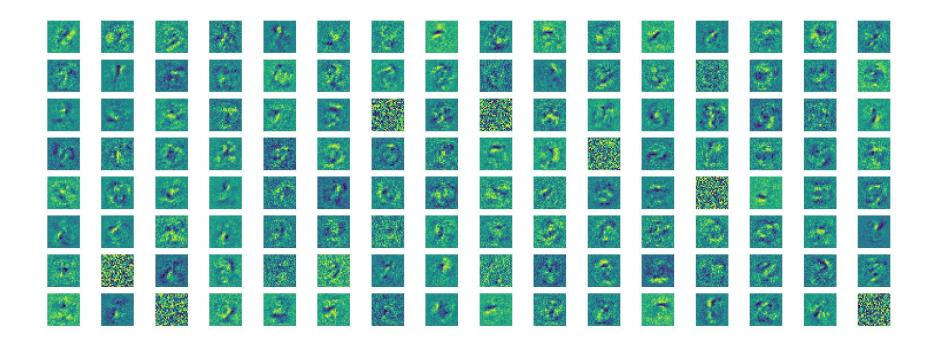
Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Autoencoders



Source: https://www.pyimagesearch.com/2020/02/17/autoencoders-with-keras-tensorflow-and-deep-learning/

Adversarial Learning



Q&As

Deep Learning: **Theories and Practices** Sirakorn Lamyai