Adversarial Learning using Cluster-based Method

Sirakorn Lamyai

Preamble

Machine learning for

Privacy

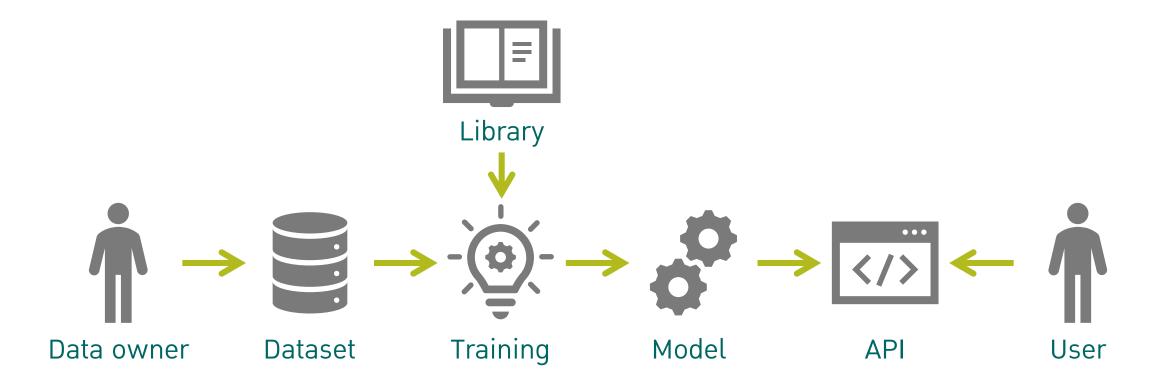
Security

- Models are widely
 used—from employment
 to jurisdiction
- Users wanted to ensure
 that it is impossible to
 extract privacy concerning data from
 the model

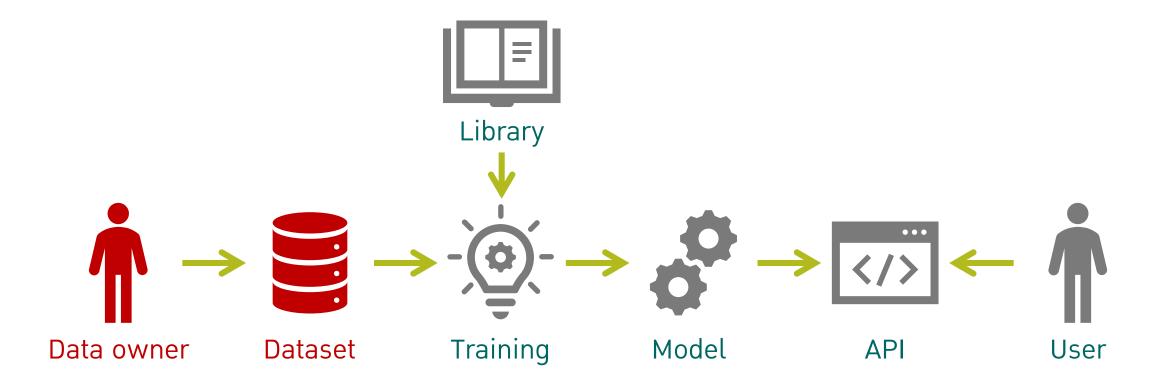
- Model users wanted to make sure that the model works regardless of malicious attempts
- Successful attacking
 attempts might result in
 life-threatening dangers

Adversarial Attack

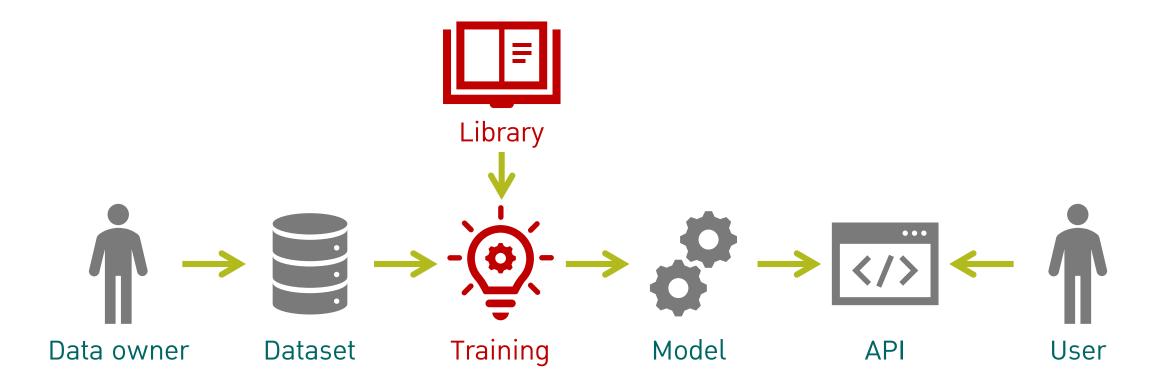
Machine Learning pipelines | Illustration adapted from Security, Privacy and ML by N. Asokan



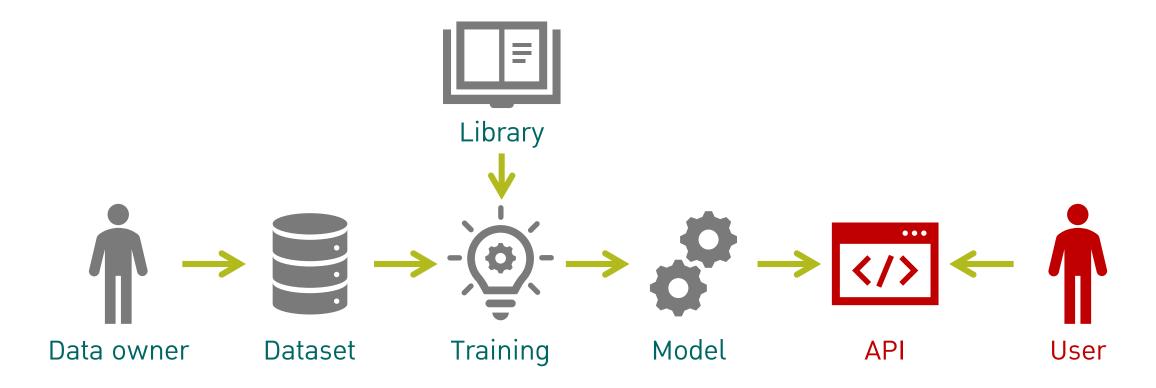
Dataset attacking Illustration adapted from Security, Privacy and ML by N. Asokan



Compromised toolchain Illustration adapted from Security, Privacy and ML by N. Asokan



Malicious input Illustration adapted from Security, Privacy and ML by N. Asokan

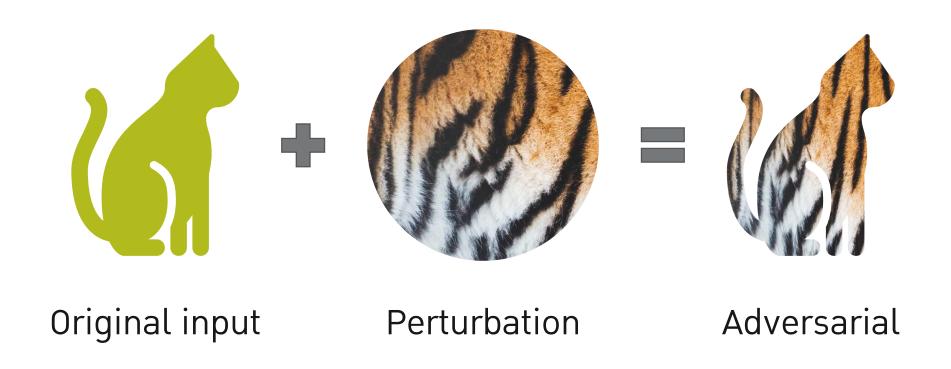


Adversarial Attack: Malicious input

https://www.facebook.com/photo?fbid=10218655842060241& set=gm.3018514041545705

- Given a model, attempt to find a small set of **perturbations** to be added to the model's input
- Adversarial input cause the model to output an incorrect answer.

Adversarial Attack: Malicious input

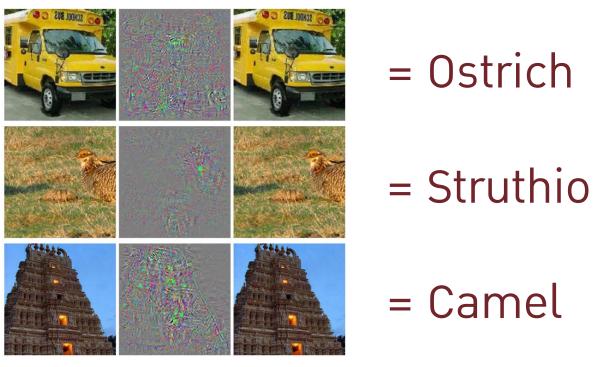


Adversarial Perturbation

Perturbation

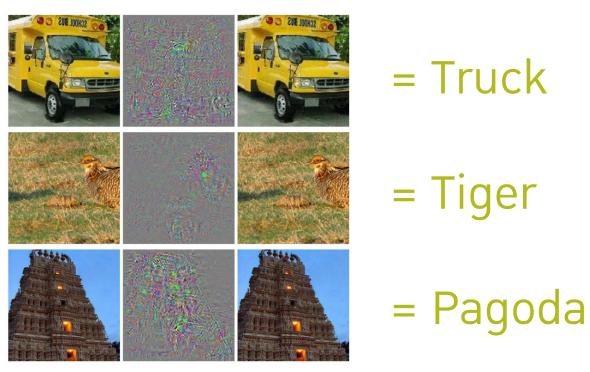
- Carefully calculated values added to the input
- Computed based on the model's knowledge
 - This will results into more aspects of adversarial learning.

Examples on attacks



Szegedy et al. *Intriguing Properties of Neural Networks*. ICLR '14 (https://arxiv.org/abs/1312.6199v4)

Our ultimate goal: Defencing system



Szegedy et al. Intriguing Properties of Neural Networks. ICLR '14 (https://arxiv.org/abs/1312.6199v4)

Adversarial Foundations

Properties and considerations

- Adversary's goal
 - To misguide or to influence?
- Adversary's knowledge
 - How much can be obtained about the model?
- Victim models
 - What is the motivation of the attacker?
- Security evaluation
 - How can we evaluate the target's *safeties*?

Untargeted Attack

- Interested in misguiding the classifier without any further specifications
- Example: Misclassifying number recognition

Targeted attack

- Intends to mislead the classifier to output a specified, intended output
- Example: Misclassifying number recognition from 3 to 7

Adversary's knowledge

White-box attacking

Classifier structure, parameters, or training sets are known

Grey-box attacking

Although unclear, some parameters are known

Black-box attacking

Only output or probabilities of classes are known

Less model knowledge

White-box model attacking

- The most destructive method of attacking
- Parameters in the model can be used to evaluate attacking efficiency

Targeted/Untargeted attack

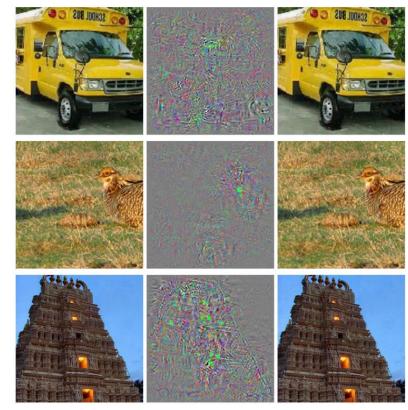
Reinforcement method should covers both cases

Literature review

Neural Network's Intriguing Property

[Szegedy+ 2013, arXiv: 1312.6199v4]

- Very first observation on adversarial attack
- Two "intriguing" properties:
 - The semantic meaning of individual units
 - Out of scope, not to be discussed
 - Network's tolerance to small perturbations

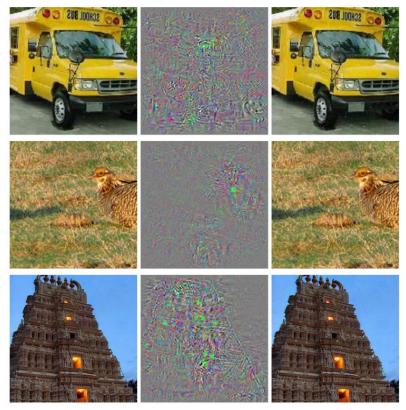


Szegedy et al. *Intriguing Properties of Neural Networks*. ICLR '14 (https://arxiv.org/abs/1312.6199v4)

Neural Network's tolerance to perturbations

[Szegedy+ 2013, arXiv: 1312.6199v4]

- Networks that are generalised well should be tolerated to small perturbations
- Maximising the prediction error by modifying the input image with additional constraint of *invisible* perturbation is possible.



Szegedy et al. *Intriguing Properties of Neural Networks*. ICLR '14 (https://arxiv.org/abs/1312.6199v4)

Explanations on adversarial

multivax:~ \$./query

THERE IS AS YET

INSUFFICIENT TRAINING

DATA FOR A MEANINGFUL

STRONG ANSWER

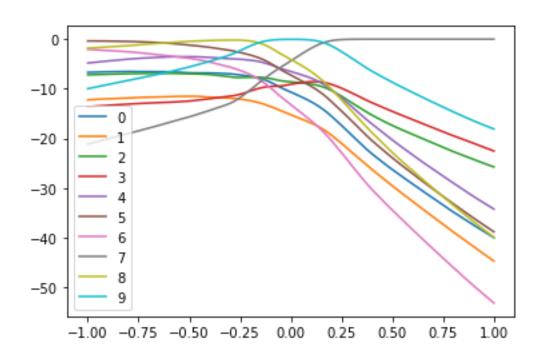
Joke adapted from Isaac Asimov's *The Last Question*

Model's nonlinearity

[Szegedy+ 2013, arXiv:1312.6199v4]

- All softmax-based classification models return a set of conditional probability P(class|input)
- The neural networks' extreme nonlinearity combined with insufficient training data points cause such exploits
- This is just a hypothesis

Explanations on adversarial



Model's linearity

[Goodfellow+ 2014, arXiv: 1412.6572]

- Goodfellow and his team argued that it's not the nonlinearity, but linearity, that cause such an exploit
- Increasing perturbation density shows a strong probability linear behaviour
- "Accidental steganography": Forcingly attend the network to the most weight-aligned values

Explanations on adversarial

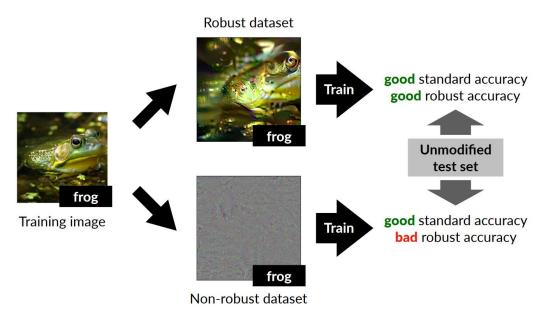


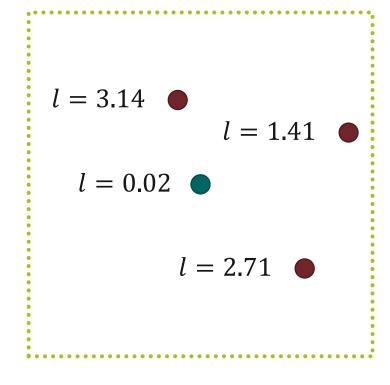
Illustration from the original paper (arXiv: 1905.02175)

Robust and non-robust features

[Ilyas+ 2019, arXiv: 1905.02175]

- "Adversarial vulnerability is a direct result of our models' sensitivity to well-generalizing features in the data"
- Robust features are perceptible by humans, non-robust features are imperceptible

Calculating the perturbation

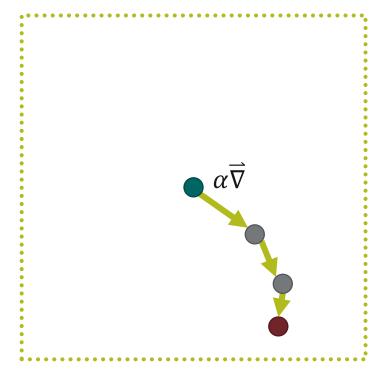


Boundary according to norm

Given an input to be attacked that lies in an input space...

- Define the "invisibility" measurement
 - Norm or other constraints
- Find the perturbation which maximise such loss function within the constrained norm
 - Optimisation problem
- There exists many perturbations, but their *power* may not be equal

Straightforward: Loss maximisation

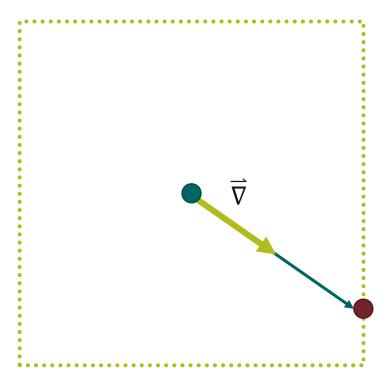


Boundary according to norm

- Iteratively maximise the loss while maintaining values inside the boundary
- Very straightforwardly done
- Targeted attack can be achieved by defining the targeted loss function to maximise

Fast Gradient Sign Method (FGSM)

[Goodfellow+ 2014, arXiv: 1412.6572]



Boundary according to norm

- This is the result from linearity explanation
- Calculate the gradient of input respective to the loss function
- Project it to maximise the acceptable norm
 - Motivation based on the attacking of model linearity
- Non-iterative, constant runtime

Projected Gradient Descent (PGD)

Boundary according to norm

[Szegedy+ 2017, arXiv: 1706.06083]

Repeat iteratively

- Calculate the gradient of loss function
- Project it according to the desired distant
- Project back into the boundary should the perturbation exceeds the acceptable norm
- Observation: The projection distant is constant regardless of gradient size

PGD vs FGSM

PGD

- Iterative method, thus consumes time
- Finds the "worst" and "most powerful" perturbation

$$\tilde{x} = x + \alpha \operatorname{sign} \left[\vec{\nabla}_{x} \mathcal{L}(x, y) \right]$$

FGSM

- Approximation method, constant runtime
- Finds the perturbation, but not the "worst" one

$$\tilde{x}_n = \tilde{x}_{n-1} + \alpha sign \left[\vec{\nabla}_x \mathcal{L}(x, y) \right]$$

Algorithm: Model retraining

- For each epoch:
 - For each minibatch:
 - Calculate perturbations on each minibatch
 - Append the perturbation to the training set
 - Train the model

Extremely slow

When computed iteratively

Computationally slow

 $O(b) \times \text{perturbation calculation complexity}$

Longer backpropagation

As the dataset length is twice increased

Knowledge is power

- The linear runtime was reduced to constant runtime using only one assumption on linearity
- Good assumption are key points to faster methods in perturbations generation

$$\tilde{x} = x + \alpha \operatorname{sign}(\vec{\nabla}_x \mathcal{L}(x, y))$$

An *intriguing* question

Can we determine the perturbations behaviour

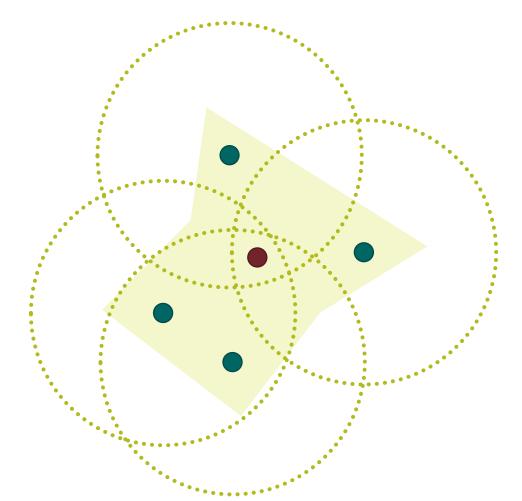
using clustering?

Motivations on Cluster

Our motivation: Clusters of Data

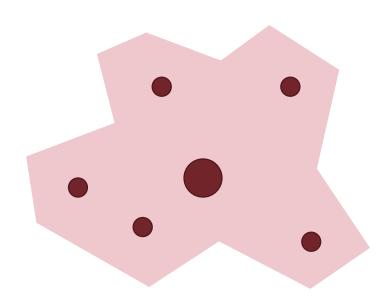
- We can run unsupervised learning on training points to cluster them into groups
- We can calculate the perturbations for the samples and cluster them into the same manner
- What are our motivations to study both types of clusters?

Clustering Analysis on Training Points



- Training points in the same class are near to each other in feature space
- These training points will be clustered into the same cluster
- There exists a perturbation that can attack all training points in the cluster

Clustering Analysis on Perturbations

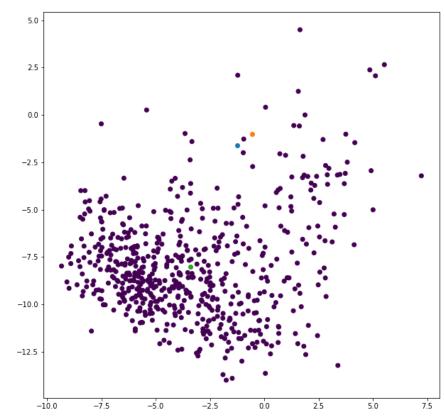


- Perturbations can be clustered into groups which are near in space
- Those perturbations can crossattack the samples used to generate them
- The perturbation nearest to the cluster's centre can "represent" the entire cluster, thus capable of attacking the samples

Our works

Clustering analysis

- Can perturbations be clustered?
- Are there any meaningful insights from inter-cluster and intra-cluster analysis?
 - Inter-cluster similarity?
 - Distribution?
 - Attacking performance?



Concept: Cluster Fast, Adversarial Fast

- Given all training points, generate perturbations for each training points in a fast manner, regardless of its efficiency in attacking
 - Fast way to understand the behaviour of the perturbations
- Cluster the training points
- In each cluster, find a perturbation to attack the entire training set efficiently
 - Effective way to attack the model while saving time

Algorithm: Model retraining

- For each epoch:
 - For each minibatch:
 - Calculate perturbations on each minibatch
 - Append the perturbation to the training set
 - Train the model

Extremely slow

When computed iteratively

Computationally slow

 $O(b) \times \text{perturbation calculation complexity}$

Longer backpropagation

As the dataset length is twice increased

Our proposed method

- For each epoch:
 - For each minibatch:
 - Calculate perturbations on each minibatch
 - Append the perturbation to the training set
 - Train the model

No free lunch

k-Means overhead

Eliminate reluctant calculation

By calculating lower amount of perturbation

Smaller batch size

By cluster-based representation

Faster backpropagation

Using weighted loss

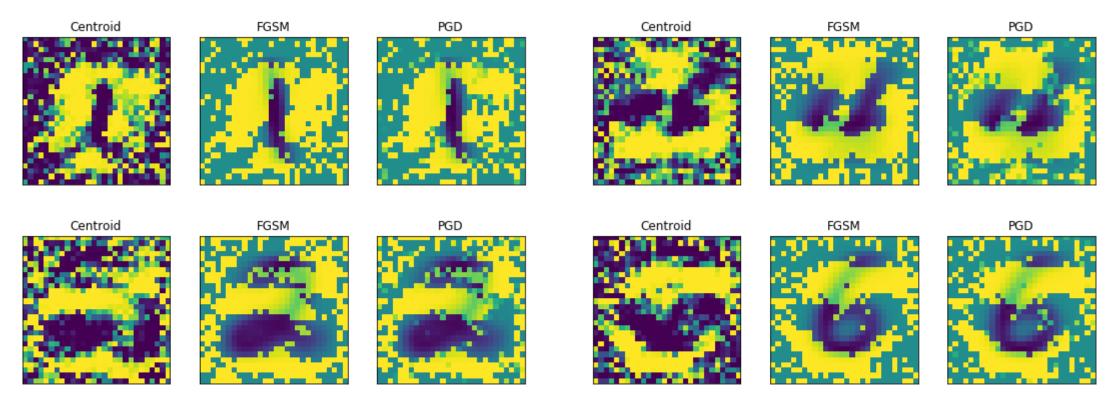
Algorithm 1: k-Perturbation

Input: data to attack, data to cluster, k

Returns: [indices of perturbations, perturbations, clustering result]

- Indices of perturbations = Perturbations = [empty list]
- Cluster the data to cluster using k-Means algorithm into k clusters
- For each cluster
 - Obtain the data points with the same indices as the cluster data
 - Calculate the perturbation that will attack such data points
 - Append the indices to indices of perturbations list
 - Append the perturbation to the perturbation list
- Return the variables

k-Perturbation results



Note: Extremely randomly selected. No cherry-picking on examples.

Which one is from k-Perturbation?

Algorithm 2: k-Reinforce

Input: Training set, k, e, m, m', w, w'

Returns: Model

- Run the k-Perturbation algorithm
- For each epoch:
 - For each minibatch of size m:
 - Sample the adversarial minibatch of size m'
 - Append the perturbation to the training set
 - Train the model using weighted loss w and w' on m and m' respectively

No free lunch

k-Means overhead

Eliminate reluctant calculation

By calculating lower amount of perturbation

Smaller batch size

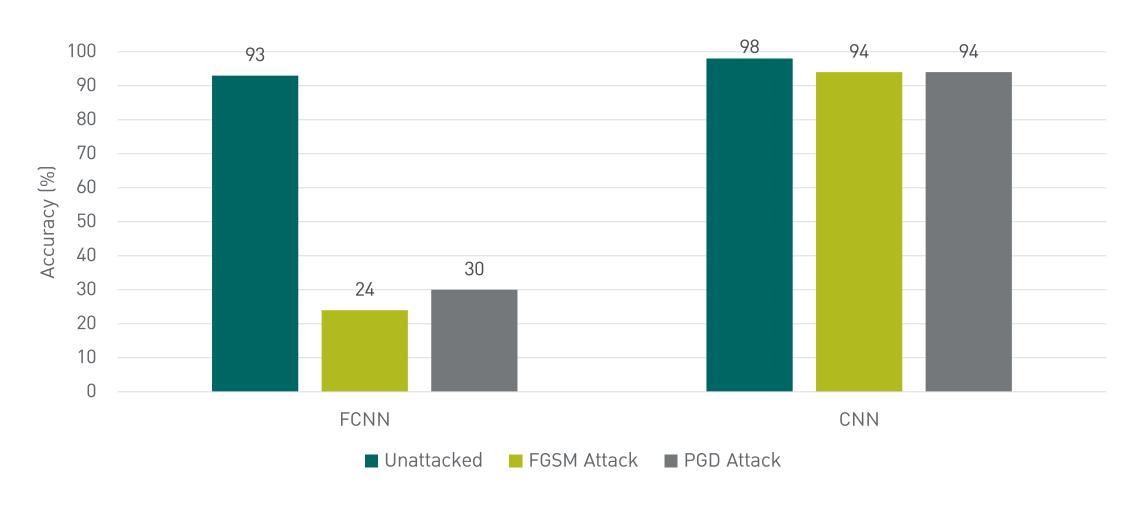
By cluster-based representation

Faster backpropagation

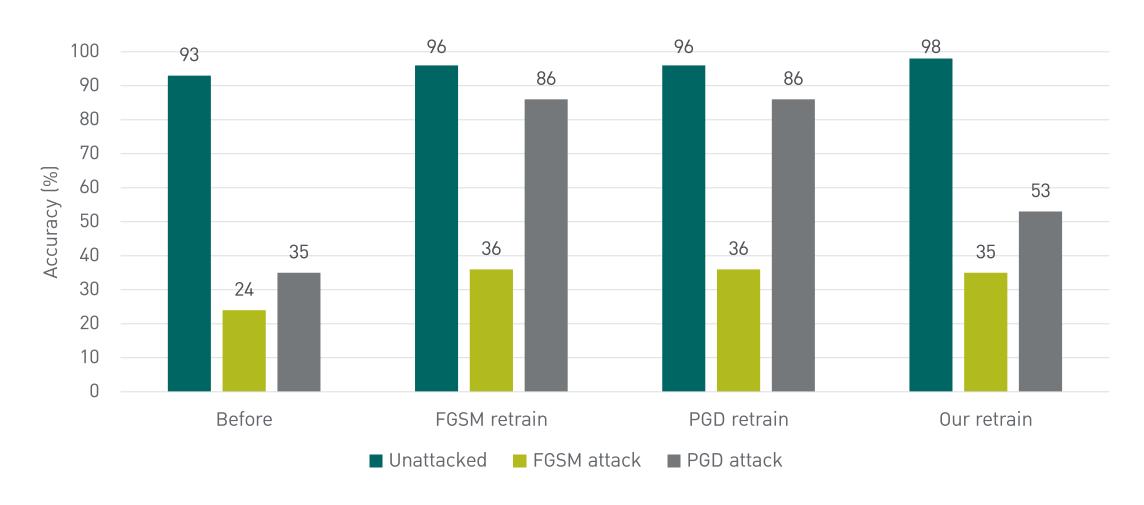
Using weighted loss

Results

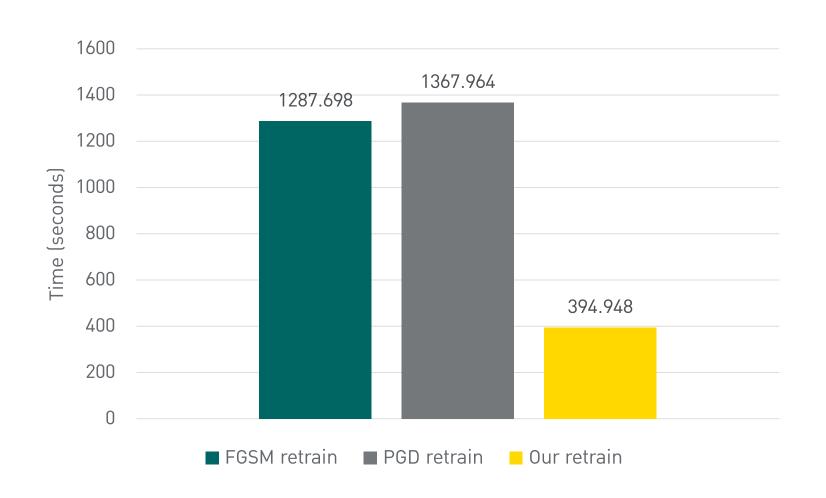
Base model accuracy



After reinforcing

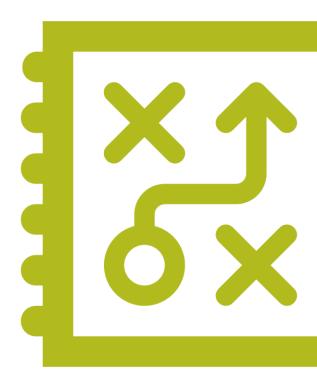


Retraining time



Further improvements

- What if we recalculate the perturbations on every iteration?
- What if we apply further cluster knowledges?
- What if other state-of-the-art methods were blended into our method?



Acknowledgements

Adversarial team

Advisors and Co-Advisors

Asst. Prof. Dr. Jittat F.

Asst. Prof. Dr. Thanawin R.

Graduate Students / Researcher

Asst. Prof. Vacharapat M.

Pongsakorn A.

Monthol C.

Undergraduate

Sirakorn L.

Adversarial Learning using Cluster-based Method

Sirakorn Lamyai

