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Preamble




Machine learning for

Privacy Security



M

Privacy

Models are widely
used—from employment
to jurisdiction

Users wanted to ensure
that it Is impossible to
extract privacy-
concerning data from

the model



Model users wanted to
make sure that the
model works regardless
of malicious attempts
Successful attacking
attempts might result in

life-threatening dangers
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Adversarial Attack
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4 Machine Learning pipelines

Illustration adapted from Security, Privacy and ML by N. Asokan
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¢ Dataset attacking

Illustration adapted from Security, Privacy and ML by N. Asokan
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(Compromised toolchain

Illustration adapted from Security, Privacy and ML by N. Asokan
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Maliclious Input

Illustration adapted from Security, Privacy and ML by N. Asokan
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Data owner Dataset Training Model
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K Adversarial Attack: Malicious input

set=gm.3018514041545705

https://www.facebook.com/photo?fbid=10218655842060241&

* Glven a model, attempt to find
a small set of perturbations to
be added to the model’s input

* Adversarial input cause the
model to output an incorrect
). answer.

—-
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K Adversarial Attack: Malicious input

Original input Perturbation Adversarial
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K Adversarial Perturbation

» Carefully calculated
values added to the input

» Computed based on the
model's knowledge
* This will results into

Perturbation more aspects of
adversarial learning.
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Examples on attacks

Ostrich

Struthio

Camel

Szegedy et al. /ntriguing Properties of Neural Networks. ICLR “14
(https://arxiv.org/abs/1312.6199v4)
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K Our ultimate goal: Defencing system

Truck

Tiger

= Pagoda

Szegedy et al. /ntriguing Properties of Neural Networks. ICLR “14
(https://arxiv.org/abs/1312.6199v4)
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Adversarial Foundations




( Properties and considerations

 Adversary’s goal
« To misqguide or to influence?

» Adversary’'s knowledge
* How much can be obtained about the model?

e Victim models
« What is the motivation of the attacker?

e Security evaluation
« How can we evaluate the target’s safeties?
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K Adversary’s goal

 Untargeted Attack

* Interested in misquiding the
classifier without any further
specifications

« Example: Misclassifying
number recognition

* Targeted attack

* Intends to mislead the classifier
to output a specified, intended
output

« Example: Misclassifying
number recognition from 3 to 7
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K Adversary’'s knowledge

White-box attacking Grey-box attacking Black-box attacking

Classifier structure, Although unclear, Only output or

parameters, or training some parameters are probabilities of classes

sets are known known are known

Less model knowledge
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K Our scope of interest

» White-box model attacking
» The most destructive method of attacking

« Parameters in the model can be used to evaluate attacking efficiency

» Targeted/Untargeted attack

* Reinforcement method should covers both cases
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20



Literature review




( Neural Network's /ntriguing Property

[Szegedy+ 2013, arXiv: 1312.6199v4]

* Very first observation on adversarial
attack

!

« Two “intriguing” properties:

* The semantic meaning of individual units

 Qut of scope, not to be discussed

* Network's tolerance to small
perturbations

Szegedy et al. /ntriguing Properties of Neural Networks.
ICLR “14 (https://arxiv.org/abs/1312.6199v4)
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( Neural Network’s tolerance to perturbations

[Szegedy+ 2013, arXiv: 1312.6199v4]

* Networks that are generalised well
should be tolerated to small
perturbations

« Maximising the prediction error by
modifying the input image with
additional constraint of /nvisible
perturbation Is possible.

Szegedy et al. /ntriguing Properties of Neural Networks.
ICLR “14 (https://arxiv.org/abs/1312.6199v4)
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K Explanations on adversarial

* Model’s nonlinearity

[Szegedy+ 2013, arXiv:1312.6199v4]

multivax:~ $ . /query * All softmax-based classification
models return a set of conditional
THERE IS AS YET probability P(classlinput)
INSUFFICIENT TRAINING * The neural networks’” extreme
DATA FOR A MEANINGFUL nonlinearity combined with
STRONG ANSWER Insufficient training data points

cause such exploits

* This Is just a hypothesis
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K Explanations on adversarial

* Model’s linearity

[Goodfellow+ 2014, arXiv: 1412.6572]
o] ——— » Goodfellow and his team argued
- that it’s not the nonlinearity, but
linearity, that cause such an
exploit
* Increasing perturbation density

shows a strong probability linear
behaviour

« “Accidental steganography”:
Forcingly attend the network to
the most weight-aligned values

wmumm-ht.ulul—'nl
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K Explanations on adversarial

 Robust and non-robust features
[Ilyas+ 2019, arXiv: 1905.02175]

 “Adversarial vulnerability is a

Robust dataset

s obustacarsry direct result of our models’
U,,m.odiﬁed sensitivity to well-generalizing

test set

features in the data”

@ g°b335rt5333r§cacfr33cy » Robust features are perceptible
o~ by humans, non-robust
features are imperceptible

Training image

Non-robust dataset
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K Calculating the perturbation

Given an input to be attacked that lies
In an input space...

 Define the “invisibility”
measurement

« Norm or other constraints

[=314 @
[=141 @

[ =0.02 . i i
®  Find the perturbation which

maximise such loss function within
=271 @ the constrained norm

 Optimisation problem

« There exists many perturbations, but
Boundary according to norm their power may not be equal
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K Straightforward: Loss maximisation

e [teratively maximise the loss
while maintaining values
Inside the boundary

eV * Very straightforwardly done
X * Targeted attack can be
: achieved by defining the

targeted loss function to
Boundary according to norm maximise
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(Fast Gradient Sign Method (FGSM)

[Goodfellow+ 2014, arXiv: 1412.6572]

* This is the result from linearity
explanation

* Calculate the of input
respective to the loss function

* Project it to maximise the
acceptable norm
\‘ » Motivation based on the attacking
of model linearity

Boundary according to norm * Non-iterative, constant runtime
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Projected Gradient Descent (PGD)

[Szegedy+ 2017, arXiv: 1706.06083]
/ I°/I%epe |ter€ﬁr2/%h
e Calculate of loss

function
/' * Project it according to the desired
Y distant
@ o \. into the boundary
should the perturbation exceeds
/ the acceptable norm
 Observation: The projection

distant is constant regardless of

Boundary according to norm gradlent SlZe
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I PGD vs FGSM

PGD FGSM

e |terative method, thus « Approximation method,
consumes time constant runtime

 Finds the “worst” and “most * Finds the perturbation, but not
powerful” perturbation the “worst” one

X=X+asign V. L(X,Y)

]

V. L(X, y)} %, =% +asign
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K Algorithm: Model retraining

* For each epoch: Extremely slow

e For each minibatch: When computed iteratively

* Calculate perturbations Computationally slow
on each minibatch 0(b) x perturbation calculation complexity

« Append the perturbation

to the training set

e Train the model Longer backpropagation

As the dataset length is twice increased
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K Knowledge is power

* The linear runtime was
reduced to constant runtime
using ~ _ .

X =X+a sign (VXL(X, y))

* Good assumption are key

points to faster methods In
perturbations generation

Adversarial Learning using Cluster-based Method 33



K An /ntriguing question

Can we determine the perturbations behaviour

using clustering?
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Motivations on Cluster




K Our motivation: Clusters of Data

« We can run unsupervised learning on training points to cluster
them into groups

« We can calculate the perturbations for the samples and cluster
them into the same manner

« What are our motivations to study both types of clusters?
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K Clustering Analysis on Training Points

* Training points In the same
class are near to each other In
feature space

°
o O ° T

® C
O e T

nese training points will be
lustered Into the same cluster

nere exists a perturbation that

can attack all training points in
the cluster
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K Clustering Analysis on Perturbations

* Perturbations can be clustered
Into groups which are near in
space

= ® * Those perturbations can cross-
attack the samples used to
° O generate them

* The perturbation nearest to the
cluster’s centre can “represent”
the entire cluster, thus capable of
attacking the samples
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Our works




K Clustering analysis

Canperturbattonsbe-ctustered?
* Are there any meaningful insights from
inter-cluster and intra-cluster analysis?

* Inter-cluster similarity?

e Distribution?

» Attacking performance?

Adversarial Learning using Cluster-based Method
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K Concept: Cluster Fast, Adversarial Fast

* Given all training points, generate perturbations for each
training points in a fast manner, regardless of its
efficiency In attacking

» Fast way to understand the behaviour of the perturbations
* Cluster the training points

* In each cluster, find a perturbation to attack the entire
training set efficiently

- Effective way to attack the model while saving time
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K Algorithm: Model retraining

* For each epoch: Extremely slow

e For each minibatch: When computed iteratively

* Calculate perturbations Computationally slow
on each minibatch 0(b) x perturbation calculation complexity

« Append the perturbation

to the training set

e Train the model Longer backpropagation

As the dataset length is twice increased
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K Our proposed method

* For each epoch: No free lunch

e For each minibatch: k-Means overhead

* Calculate perturbations Eliminate reluctant calculation
on each minibatch By calculating lower amount of perturbation

* Append the perturbation Smaller batch size
to the training set By cluster-based representation

e Train the model Faster backpropagation

Using weighted loss
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K Algorithm 1: k-Perturbation

Input: data to attack, data to cluster, k

Returns: [indices of perturbations, perturbations, clustering result/
» Indices of perturbations = Perturbations = [empty list]

 Cluster the data to cluster using k-Means algorithm into k clusters

* For each cluster
 Obtain the data points with the same indices as the cluster data
» Calculate the perturbation that will attack such data points
» Append the indices to indices of perturbations list
« Append the perturbation to the perturbation list

* Return the variables

Adversarial Learning using Cluster-based Method
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K k-Perturbation results

Note: Extremely randomly selected. No cherry-picking on examples.
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I Which one is from k-Perturbation?

Adversarial Learning using Cluster-based Method
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K Algorithm 2: k-Reinforce

Input: Training set, k, e, m, m’, w, w’
Returns: Model
* Run the k-Perturbation algorithm

 For each epoch:
* For each minibatch of size m:
« Sample the adversarial minibatch of size m’
« Append the perturbation to the training set

* Train the model using weighted loss w and
w’ on m and m’ respectively

Adversarial Learning using Cluster-based Method

No free lunch

k-Means overhead

By calculating lower amount of perturbation

By cluster-based representation

Using weighted loss
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Results




K Base model accuracy
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K After reinforcing

Accuracy (%]

100
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Before

PGD retrain

FGSM retrain

B Unattacked m FGSM attack M PGD attack
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K Retraining time

1600

1367.964
1400 1287.698

1200
1000
800
600
394.948

400
200
0

B FGSM retrain M PGD retrain Our retrain

Time (seconds)
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K Further improvements

« What if we recalculate the perturbations on
every Iteration?

* What If we apply further cluster knowledges?

« What If other state-of-the-art methods were
blended into our method?
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